scholarly journals Are alpha-band oscillations a default dynamic of the human visual brain, or a product of ongoing visual processes?

2020 ◽  
Author(s):  
Wiremu Hohaia ◽  
Blake W. Saurels ◽  
Alan Johnston ◽  
Kielan Yarrow ◽  
Derek H. Arnold

AbstractOne of the seminal findings of cognitive neuroscience is that the power of alpha-band (∼10 Hz) brain waves, in occipital regions, increases when people close their eyes. This has encouraged the view that alpha oscillations are a default dynamic, to which the visual brain returns in the absence of input. Accordingly, we might be unable to increase the power of alpha oscillations when the eyes are closed, above the level that would usually ensue. Here we report counter evidence. We used electroencephalography (EEG) to record brain activity when people had their eyes open and closed, before and after they had adapted to radial motion. The increase in the power of alpha oscillations when people closed their eyes was enhanced by adaptation to a broad range of radial motion speeds. This effect was greatest for 10Hz motion, but robust for other frequencies, and specifically for 7.5Hz. This last observation is important, as it rules against an ongoing entrainment of activity, at the adaptation frequency, as an explanation for our results. Instead, our data show that visual processes remain active when people close their eyes, and these can be modulated by adaptation to increase the power of alpha oscillations in occipital brain regions.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Blake W. Saurels ◽  
Wiremu Hohaia ◽  
Kielan Yarrow ◽  
Alan Johnston ◽  
Derek H. Arnold

AbstractPrediction is a core function of the human visual system. Contemporary research suggests the brain builds predictive internal models of the world to facilitate interactions with our dynamic environment. Here, we wanted to examine the behavioural and neurological consequences of disrupting a core property of peoples’ internal models, using naturalistic stimuli. We had people view videos of basketball and asked them to track the moving ball and predict jump shot outcomes, all while we recorded eye movements and brain activity. To disrupt people’s predictive internal models, we inverted footage on half the trials, so dynamics were inconsistent with how movements should be shaped by gravity. When viewing upright videos people were better at predicting shot outcomes, at tracking the ball position, and they had enhanced alpha-band oscillatory activity in occipital brain regions. The advantage for predicting upright shot outcomes scaled with improvements in ball tracking and occipital alpha-band activity. Occipital alpha-band activity has been linked to selective attention and spatially-mapped inhibitions of visual brain activity. We propose that when people have a more accurate predictive model of the environment, they can more easily parse what is relevant, allowing them to better target irrelevant positions for suppression—resulting in both better predictive performance and in neural markers of inhibited information processing.


2015 ◽  
Vol 113 (7) ◽  
pp. 2753-2759 ◽  
Author(s):  
Rania Ghosn ◽  
Lydia Yahia-Cherif ◽  
Laurent Hugueville ◽  
Antoine Ducorps ◽  
Jean-Didier Lemaréchal ◽  
...  

The aim of the present work was to investigate the effects of the radiofrequency (RF) electromagnetic fields (EMFs) on human resting EEG with a control of some parameters that are known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine. Eyes-open and eyes-closed resting EEG data were recorded in 26 healthy young subjects under two conditions: sham exposure and real exposure in double-blind, counterbalanced, crossover design. Spectral power of EEG rhythms was calculated for the alpha band (8–12 Hz). Saliva samples were collected before and after the study. Salivary cortisol and caffeine were assessed by ELISA and HPLC, respectively. The electrode impedance was recorded at the beginning of each run. Compared with the sham session, the exposure session showed a statistically significant ( P < 0.0001) decrease of the alpha band spectral power during closed-eyes condition. This effect persisted in the postexposure session ( P < 0.0001). No significant changes were detected in electrode impedance, salivary cortisol, and caffeine in the sham session compared with the exposure one. These results suggest that GSM-EMFs of a mobile phone affect the alpha band within spectral power of resting human EEG.


2018 ◽  
Author(s):  
Johanna Wind ◽  
Wolfgang Schöllhorn

AbstractDance as one of the earliest cultural assets of mankind is practised in different cultures, mostly for wellbeing or for treating psycho-physiological disorders like Parkinson, depression, autism. However, the underlying neurophysiological mechanisms are still unclear and only few studies address the effects of particular dance styles. For a first impression, we were interested in the effects of modern jazz dance (MJD) on the brain activation that would contribute to the understanding of these mechanisms. 11 female subjects rehearsed a MJD choreography for three weeks (1h per week) and passed electroencephalographic (EEG) measurements in a crossover-design thereafter. The objectives were to establish the differences between dancing physically and participating just mentally with or without music. Therefore, each subject realized the four following test conditions: dancing physically to and without music, dancing mentally to and without music. Each of the conditions were performed for 15 minutes. Before and after each condition, the EEG activities were recorded under resting conditions (2 min. eyes-open, 2 min. eyes-closed) followed by a subsequent wash-out phase of 10 minutes.The results of the study revealed no time effects for the mental dancing conditions, either to or without music. An increased electrical brain activation was followed by the physical dancing conditions with and without music for the theta, alpha-1, alpha-2, beta and gamma frequency band across the entire scalp. Especially the higher frequencies (alpha-2, beta, gamma) showed increased brain activation across all brain areas. Higher brain activities for the physical dancing conditions were identified in comparison to the mental dancing condition. No statistically significant differences could be found as to dancing to or without music. Our findings demonstrate evidence for the immediate influence of modern jazz dance and its sweeping effects on all brain areas for all measured frequency bands, when dancing physically. In comparison, dancing just mentally does not result in similar effects.


2014 ◽  
Vol 111 (6) ◽  
pp. 1300-1307 ◽  
Author(s):  
Lei Ai ◽  
Tony Ro

Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.


2017 ◽  
Vol 114 (29) ◽  
pp. E5979-E5985 ◽  
Author(s):  
Sujaya Neupane ◽  
Daniel Guitton ◽  
Christopher C. Pack

Oscillations are ubiquitous in the brain, and they can powerfully influence neural coding. In particular, when oscillations at distinct sites are coherent, they provide a means of gating the flow of neural signals between different cortical regions. Coherent oscillations also occur within individual brain regions, although the purpose of this coherence is not well understood. Here, we report that within a single brain region, coherent alpha oscillations link stimulus representations as they change in space and time. Specifically, in primate cortical area V4, alpha coherence links sites that encode the retinal location of a visual stimulus before and after a saccade. These coherence changes exhibit properties similar to those of receptive field remapping, a phenomenon in which individual neurons change their receptive fields according to the metrics of each saccade. In particular, alpha coherence, like remapping, is highly dependent on the saccade vector and the spatial arrangement of current and future receptive fields. Moreover, although visual stimulation plays a modulatory role, it is neither necessary nor sufficient to elicit alpha coherence. Indeed, a similar pattern of coherence is observed even when saccades are made in darkness. Together, these results show that the pattern of alpha coherence across the retinotopic map in V4 matches many of the properties of receptive field remapping. Thus, oscillatory coherence might play a role in constructing the stable representation of visual space that is an essential aspect of conscious perception.


2020 ◽  
Author(s):  
Blake W. Saurels ◽  
Wiremu Hohaia ◽  
Kielan Yarrow ◽  
Alan Johnston ◽  
Derek H. Arnold

AbstractPrediction is considered a core function of the human visual brain, but relating this suggestion to real life is problematic, as findings regarding the neural correlates of prediction rely on abstracted experiments, not reminiscent of a typical visual diet. We addressed this by having people view videos of basketball, and asking them to predict jump shot outcomes while we recorded eye movements and brain activity. We used the brain’s understanding of physics to manipulate predictive success, by inverting footage. People had enhanced alpha-band activity in occipital brain regions when watching upright videos, and this predicted both an increase in predictive success and enhanced ball tracking. Alpha-band activity in visual brain regions has been linked to inhibition, so we regard our results as evidence that inhibition of task irrelevant information is a core function of predictive processes in the visual brain, enacted as people complete visual tasks typical of daily life.


2020 ◽  
Author(s):  
Alexander Zhigalov ◽  
Ole Jensen

AbstractSpatial attention provides a mechanism for respectively enhancing relevant and suppressing irrelevant information. While it is well-established that attention modulates oscillations in the alpha band, it remains unclear if alpha oscillations are involved in directly modulating the neuronal excitability associated with the allocation of spatial attention. In this study in humans, we utilized a novel broadband frequency (60 – 70 Hz) tagging paradigm to quantify neuronal excitability in relation to alpha oscillations in a spatial attention paradigm. We used magnetoencephalography to characterize ongoing brain activity as it allows for localizing the sources of both the alpha and frequency tagging responses. We found that attentional modulation of alpha power and the frequency tagging response are uncorrelated over trials. Importantly, the neuronal sources of the tagging response were localized in early visual cortex (V1) whereas the sources of the alpha activity were identified around parieto-occipital sulcus. Moreover, we found that attention did not modulate the latency of the frequency tagged responses. Our findings point to alpha band oscillations serving a downstream gating role rather than implementing gain control of excitability in early visual regions.Significance StatementBy combining magnetoencephalography and a novel broadband frequency tagging approach, we show that spatial attention differently modulates alpha oscillations and neuronal excitability. Importantly, the sources of the alpha oscillations and tagging responses were spatially distinct and the alpha power and tagging response were not related over trials. These results are inconsistent with previous ideas suggesting that alpha oscillations are involved in gain control of early sensory regions; rather alpha oscillations are involved in the allocation of neuronal resources in downstream regions.


2014 ◽  
Vol 72 (9) ◽  
pp. 663-670 ◽  
Author(s):  
Eliane C. Miotto ◽  
Joana B. Balardin ◽  
Cary R. Savage ◽  
Maria da Graça M. Martin ◽  
Marcelo C. Batistuzzo ◽  
...  

Despite growing interest in developing cognitive training interventions to minimize the aging cognitive decline process, no studies have attempted to explore which brain regions support the application of semantic strategies during verbal memory encoding. Our aim was to investigate the behavioral performance and brain correlates of these strategies in elderly individuals using fMRI in healthy older subjects. Method Subjects were scanned twice on the same day, before and after, directed instructions to apply semantic strategies during the encoding of word lists. Results Improved memory performance associated to increased semantic strategy application and brain activity in the left inferior and middle and right medial superior prefrontal cortex were found after the directed instructions. There was also reduced activation in areas related to strategy mobilization. Conclusion Improved memory performance in older subjects after the application of semantic strategies was associated with functional brain reorganization involving regions inside and outside the typical memory network.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Praveen Sripad ◽  
Jessica Rosenberg ◽  
Frank Boers ◽  
Christian P. Filss ◽  
Norbert Galldiks ◽  
...  

In the past two decades, many studies have shown the paradoxical efficacy of zolpidem, a hypnotic used to induce sleep, in transiently alleviating various disorders of consciousness such as traumatic brain injury (TBI), dystonia, and Parkinson’s disease. The mechanism of action of this effect of zolpidem is of great research interest. In this case study, we use magnetoencephalography (MEG) to investigate a fully conscious, ex-coma patient who suffered from neurological difficulties for a few years due to traumatic brain injury. For a few years after injury, the patient was under medication with zolpidem that drastically improved his symptoms. MEG recordings taken before and after zolpidem showed a reduction in power in the theta-alpha (4–12 Hz) and lower beta (15–20 Hz) frequency bands. An increase in power after zolpidem intake was found in the higher beta/lower gamma (20–43 Hz) frequency band. Source level functional connectivity measured using weighted-phase lag index showed changes after zolpidem intake. Stronger connectivity between left frontal and temporal brain regions was observed. We report that zolpidem induces a change in MEG resting power and functional connectivity in the patient. MEG is an informative and sensitive tool to detect changes in brain activity for TBI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Lachner-Piza ◽  
Lukas Kunz ◽  
Armin Brandt ◽  
Matthias Dümpelmann ◽  
Aljoscha Thomschewski ◽  
...  

Human High-Frequency-Oscillations (HFO) in the ripple band are oscillatory brain activity in the frequency range between 80 and 250 Hz. HFOs may comprise different subgroups that either play a role in physiologic or pathologic brain functions. An exact differentiation between physiologic and pathologic HFOs would help elucidate their relevance for cognitive and epileptogenic brain mechanisms, but the criteria for differentiating between physiologic and pathologic HFOs remain controversial. In particular, the separation of pathologic HFOs from physiologic HFOs could improve the identification of epileptogenic brain regions during the pre-surgical evaluation of epilepsy patients. In this study, we performed intracranial electroencephalography recordings from the hippocampus of epilepsy patients before, during, and after the patients completed a spatial navigation task. We isolated hippocampal ripples from the recordings and categorized the ripples into the putative pathologic group iesRipples, when they coincided with interictal spikes, and the putative physiologic group isolRipples, when they did not coincide with interictal spikes. We found that the occurrence of isolRipples significantly decreased during the task as compared to periods before and after the task. The rate of iesRipples was not modulated by the task. In patients who completed the spatial navigation task on two consecutive days, we furthermore examined the occurrence of ripples in the intervening night. We found that the rate of ripples that coincided with sleep spindles and were therefore putatively physiologic correlated with the performance improvement on the spatial navigation task, whereas the rate of all ripples did not show this relationship. Together, our results suggest that the differentiation of HFOs into putative physiologic and pathologic subgroups may help identify their role for spatial memory and memory consolidation processes. Conversely, excluding putative physiologic HFOs from putative pathologic HFOs may improve the HFO-based identification of epileptogenic brain regions in future studies.


Sign in / Sign up

Export Citation Format

Share Document