scholarly journals Conjugate buoyant convective transport of nanofluids in an enclosed annular geometry

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Sankar ◽  
N. Keerthi Reddy ◽  
Younghae Do

AbstractA vertical annular configuration with differently heated cylindrical surfaces and horizontal adiabatic boundaries is systematically studied in view to their industrial applications. In this paper, we investigate the effects of conjugate buoyant heat transport in water based nanofluids with different nanoparticles such as alumina, titania or copper, and is filled in the enclosed annular gap. The annulus space is formed by a thick inner cylinder having a uniform high temperature, an exterior cylindrical tube with a constant lower temperature, and thermally insulated upper and lower surfaces. By investigating heat transport for broad spectrum of Rayleigh number, solid wall thickness, thermal conductivity ratio and nanoparticle volume fraction, we found that the influence of wall thickness on thermal dissipation rate along wall and interface greatly depends on conductivity ratio and vice-versa. In particular, we uncover that the choice of nanoparticle in a nanofluid and its concentration are key factors in enhancing the thermal transport along the interface. Specially, copper based nanofluids produces higher heat transport among other nanoparticles, and for the range of nanoparticle concentration chosen in this analysis, enhanced thermal dissipation along the interface has been detected as nanoparticle volume fraction is increased. Our results are applicable to choose nanofluids along with other critical parameters for the desired heat transport.

2021 ◽  
Author(s):  
M. Sankar ◽  
N. Keerthi Reddy ◽  
Younghae Do

Abstract A vertical annular configuration with differently heated cylindrical surfaces and horizontal adiabatic boundaries is extensively studied due to many industrial applications. In this paper, we investigate the effects of conjugate buoyant heat transport within water based nanofluid with different nanoparticles such as alumina, titanium oxide or copper, which is contained in the gap of the enclosed annulus. The enclosed annulus is constituted by a thick inner cylinder with a constant high temperature, an exterior boundary with a constant low temperature and thermally insulated upper and lower surfaces. By investigating heat transport for broad spectrum of Rayleigh number, solid wall thickness, thermal conductivity ratio and nanoparticle volume fraction, we found that the influence of wall thickness on thermal dissipation rate along wall and interface greatly depend on conductivity ratio and vice-versa. In particular, we uncover that the choice of nanoparticle in a nanofluid and its concentration are key factors in enhancing the thermal transport along the interface. Specially, copper based nanofluids produces higher heat transport among other nanoparticles, and increasing nanoparticle concentration leads to enhanced thermal dissipation along interface. Our results are applicable to choose nanofluids along with other critical parameters for the desired heat transport.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taza Gul ◽  
Basit Ali ◽  
Wajdi Alghamdi ◽  
Saleem Nasir ◽  
Anwar Saeed ◽  
...  

AbstractIn this new world of fluid technologies, hybrid nanofluid has become a productive subject of research among scientists for its potential thermal features and abilities, which provides an excellent result as compared to nanofluids in growing the rate of heat transport. Our purpose here is to introduce the substantial influences of magnetic field on 2D, time-dependent and stagnation point inviscid flow of couple stress hybrid nanofluid around a rotating sphere with base fluid is pure blood, $${\text{TiO}}_{2} \,\,{\text{and}}\,\,{\text{Ag}}$$ TiO 2 and Ag as the nanoparticles. To translate the governing system of partial differential equations and the boundary conditions relevant for computation, some suitable transformations are implemented. To obtain the analytical estimations for the corresponding system of differential expression, the innovative Optimal Homotopy Analysis Method is used. The characteristics of hybrid nanofluid flow patterns, including temperature, velocity and concentration profiles are simulated and analyzed in detail due to the variation in the evolving variables. Detailed research is also performed to investigate the influences of relevant constraints on the rates, momentum and heat transport for both $${\text{TiO}}_{2} + {\text{Ag}} + Blood$$ TiO 2 + Ag + B l o o d and $${\text{TiO}}_{2} + Blood$$ TiO 2 + B l o o d . One of the many outcomes of this analysis, it is observed that increasing the magnetic factor will decelerate the hybrid nanofluid flow velocity and improve the temperature profile. It may also be demonstrated that by increasing the Brownian motion factor, significant improvement can be made in the concentration field of hybrid nanofluid. The increase in the nanoparticle volume fraction from 0.01 to 0.02 in the case of the hybrid nanofluid enhances the thermal conductivity from 5.8 to 11.947% and for the same value of the nanoparticle volume fraction in the case of nanofluid enhance the thermal conductivity from 2.576 to 5.197%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oktay Çiçek ◽  
A. Cihat Baytaş

Purpose The purpose of this study is to numerically investigate the confined single-walled carbon nanotube-water nanofluid jet impingement heating of a cooled surface with a uniform heat flux in the presence of a porous layer. The analysis of the convective heat transfer mechanism is introduced considering the buoyancy force effect under local thermal non-equilibrium conditions. Design/methodology/approach The governing equations for the nanofluid and solid phase are discretized by the finite volume method and the SIMPLE algorithm is used to solve these equations. Findings It is observed that there is an increase in a local variation of temperature along the upper wall with increasing Reynolds, Darcy and Grashof numbers. For given parameters, the optimum values of thermal conductivity ratio and porous layer thickness leading to better heating on the upper wall are found as Kr = 1.0 and S = 0.5, respectively. The maximum and minimum values of temperature on the upper wall are obtained in the case of higher nanoparticle volume fraction at Re = 100, however, the temperature values get higher along the upper wall with increasing nanoparticle volume fraction at Re = 300. Originality/value The effects of various parameters, such as Reynolds number, Darcy number and Grashof number, on thermal behavior and nanofluid flow are examined to determine the desirable heating conditions for the upper wall. This paper provides a solution to problems such as icing on the surface with a suitable thermal design and optimum geometric configuration.


Mechanika ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 126-133
Author(s):  
Thansekhar M.Rathinam

A numerical study of conjugate free convection heat transfer of Al2O3/water nanofluid inside a differentially heated square enclosure with a baffle attached to its hot wall has been carried out. A detailed parametric study has been carried out to analyze the effect of Rayleigh number (104 < Ra < 106), length, thickness and position of baffle, conductivity ratio and volume fraction of the nanoparticle (0<<0.2) on heat transfer. The thermal conductivity ratio of the baffle plays a major role on the conjugate heat transfer inside the enclosure. Higher the baffle length better is the effectiveness of the baffle. The average Nusselt number is found to be an increasing function of both thermal conductivity ratio and volume fraction of the nanofluid. The minimum enhancement of conjugate heat transfer is 30% when Al2O3/water nanofluid of 0.1 volume fraction is used for the entire range of Rayleigh number considered.


2020 ◽  
Author(s):  
Taza Gul ◽  
Basit Ali ◽  
Saleem Nasir ◽  
Muhammad Jawad ◽  
Anwar Saeed

Abstract In this new world of fluid technologies, hybrid nanofluid has become a productive subject of research among scientists for its potential thermal features and abilities, which provides an excellent result as compared to nanofluids in growing the rate of heat transport. Our purpose here is to introduce the substantial influences of magnetic field on 2D, time dependent and stagnation point inviscid flow of couple stress hybrid nanofluid around a rotating sphere with base fluid is pure blood, TiO2, and, Ag as the nanoparticles. To translate the governing system of partial differential equations and the boundary conditions relevant for computation, some suitable transformations are implemented. To obtain the analytical estimations for the corresponding system of differential expression, the innovative Homotopy Analysis Method (HAM) approach is used. The characteristics of hybrid nanofluid flow patterns, including temperature, velocity and concentration profiles are simulated and analyzed in detail due to the variation in the evolving variables. A detailed research is also performed in order to investigate the influences of relevant constraints on the rates, momentum and heat transport for both TiO2 + Ag + Blood and TiO2 + Blood. One of the many outcomes of this analysis, it is observed that increasing the magnetic factor will decelerate the hybrid nanofluid flow velocity and improve the temperature profile. It may also be demonstrated that by increasing the Brownian motion factor, significant improvement can be made in the concentration field of hybrid nanofluid. The increase in the nanoparticle volume fraction from 0.01 to 0.02 in case of the hybrid nanofluid enhance the thermal conductivity from 5.8% to 11.947% and for the same value of the nanoparticle volume fraction in case of nanofluid enhance the thermal conductivity from 2.576% to 5.197%.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Habibis Saleh ◽  
Ishak Hashim

Conjugate natural convection-conduction heat transfer in a square enclosure with a finite wall thickness is studied numerically in the present paper. The governing parameters considered are the Rayleigh number5×103≤Ra≤106, the wall-to-fluid thermal conductivity ratio0.5≤Kr≤10, and the ratio of wall thickness to its height0.2≤D≤0.4. The staggered grid arrangement together with MAC method was employed to solve the governing equations. It is found that the fluid flow and the heat transfer can be controlled by the thickness of the bottom wall, the thermal conductivity ratio, and the Rayleigh number.


Author(s):  
K. M. Ramadan

Abstract Numerical solutions for conjugate heat transfer of a hydro-dynamically fully developed, thermally developing, steady, incompressible laminar gas flow in a microtube with uniform wall heat flux boundary condition are presented. The mathematical model takes into account effects of rarefaction, viscous dissipation, flow work, shear work, and axial conduction in both the wall and the fluid. The effect of the tube wall thickness, the wall-to-fluid thermal conductivity ratio, as well as other factors on heat transfer parameters is investigated, and comparisons with the case of zero wall thickness are presented as appropriate. The results illustrate the significance of heat conduction in the tube wall on convective heat transfer and disclose the significant deviation from those with no conjugated effects. Increasing the wall thickness lowers the local Nusselt number. Increasing the wall-to-fluid thermal conductivity ratio also results in lower Nusselt number. In relatively long and thick microtubes with high wall-to-fluid thermal conductivity ratio, the local Nusselt number exhibits minimum values in the entrance regions and at the end sections due to axial conduction effects. The analysis presented also demonstrate the significance of rarefaction, shear work, axial conduction, as well as the combined viscous dissipation and flow work effects on heat transfer parameters in a microtube gas flow. The combined flow work and viscous dissipation effects on heat transfer parameters are significant and result in a reduction in the Nusselt number. The shear work lowers the Nusselt number when heat is added to the fluid.


2002 ◽  
Author(s):  
Julaporn Kaenton ◽  
Victoria Timchenko ◽  
Mohammed El Ganaoui ◽  
Graham de Vahl Davis ◽  
Eddie Leonardi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 572
Author(s):  
Ching-Jenq Ho ◽  
Shih-Ming Lin ◽  
Chi-Ming Lai

This study explores the effects of pipe wall properties (thermal conductivity k and wall thickness tw) on the heat transfer performance of a rectangular thermosyphon with a phase change material (PCM) suspension and a geometric configuration (aspect ratio = 1; dimensionless heating section length = 0.8; dimensionless relative elevation between the cooling and the heating sections = 2) that ensures the optimum heat transfer efficiency in the cooling section. The following parameter ranges are studied: the dimensionless loop wall thickness (0 to 0.5), wall-to-fluid thermal conductivity ratio (0.1 to 100), modified Rayleigh number (1010 to 1011), and volumetric fraction of PCM particles (0 to 10%). The results show that appropriate selection of k and tw can lead to improved heat transfer effectiveness in the cooling section of the PCM suspension-containing rectangular thermosyphon.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 623
Author(s):  
Firas A. Alwawi ◽  
Mohammed Z. Swalmeh ◽  
Amjad S. Qazaq ◽  
Ruwaidiah Idris

The assumptions that form our focus in this study are water or water-ethylene glycol flowing around a horizontal cylinder, containing hybrid nanoparticles, affected by a magnetic force, and under a constant wall temperature, in addition to considering free convection. The Tiwari–Das model is employed to highlight the influence of the nanoparticles volume fraction on the flow characteristics. A numerical approximate technique called the Keller box method is implemented to obtain a solution to the physical model. The effects of some critical parameters related to heat transmission are also graphically examined and analyzed. The increase in the nanoparticle volume fraction increases the heat transfer rate and liquid velocity; the strength of the magnetic field has an adverse effect on liquid velocity, heat transfer, and skin friction. We find that cobalt nanoparticles provide more efficient support for the heat transfer rate of aluminum oxide than aluminum nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document