scholarly journals Effects of the Wall Properties on the Cooling Efficiency in a Thermosyphon Containing PCM Suspensions

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 572
Author(s):  
Ching-Jenq Ho ◽  
Shih-Ming Lin ◽  
Chi-Ming Lai

This study explores the effects of pipe wall properties (thermal conductivity k and wall thickness tw) on the heat transfer performance of a rectangular thermosyphon with a phase change material (PCM) suspension and a geometric configuration (aspect ratio = 1; dimensionless heating section length = 0.8; dimensionless relative elevation between the cooling and the heating sections = 2) that ensures the optimum heat transfer efficiency in the cooling section. The following parameter ranges are studied: the dimensionless loop wall thickness (0 to 0.5), wall-to-fluid thermal conductivity ratio (0.1 to 100), modified Rayleigh number (1010 to 1011), and volumetric fraction of PCM particles (0 to 10%). The results show that appropriate selection of k and tw can lead to improved heat transfer effectiveness in the cooling section of the PCM suspension-containing rectangular thermosyphon.

2020 ◽  
Vol 10 (18) ◽  
pp. 6211
Author(s):  
Ching-Jenq Ho ◽  
Shih-Ming Lin ◽  
Rong-Horng Chen ◽  
Chi-Ming Lai

This article considers the problem of natural heat transfer in a rectangular thermosiphon to investigate the effects of wall properties (thickness and thermal conductivity) on the heat-transfer characteristics of phase-change-material (PCM) suspension flow. The following parameter ranges were investigated: dimensionless loop-wall thickness, 0–0.5; wall-to-fluid thermal-conductivity ratio, 0.1–100; modified Rayleigh number, 1010–1011; and volumetric fraction of PCM particles, 0–10%. From numerical simulations via the finite-volume approach, it was found that using a pipe with appropriate wall thickness and thermal conductivity containing PCM suspensions for the heating section of a rectangular thermosiphon can effectively control the maximal temperature.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Habibis Saleh ◽  
Ishak Hashim

Conjugate natural convection-conduction heat transfer in a square enclosure with a finite wall thickness is studied numerically in the present paper. The governing parameters considered are the Rayleigh number5×103≤Ra≤106, the wall-to-fluid thermal conductivity ratio0.5≤Kr≤10, and the ratio of wall thickness to its height0.2≤D≤0.4. The staggered grid arrangement together with MAC method was employed to solve the governing equations. It is found that the fluid flow and the heat transfer can be controlled by the thickness of the bottom wall, the thermal conductivity ratio, and the Rayleigh number.


Author(s):  
K. M. Ramadan

Abstract Numerical solutions for conjugate heat transfer of a hydro-dynamically fully developed, thermally developing, steady, incompressible laminar gas flow in a microtube with uniform wall heat flux boundary condition are presented. The mathematical model takes into account effects of rarefaction, viscous dissipation, flow work, shear work, and axial conduction in both the wall and the fluid. The effect of the tube wall thickness, the wall-to-fluid thermal conductivity ratio, as well as other factors on heat transfer parameters is investigated, and comparisons with the case of zero wall thickness are presented as appropriate. The results illustrate the significance of heat conduction in the tube wall on convective heat transfer and disclose the significant deviation from those with no conjugated effects. Increasing the wall thickness lowers the local Nusselt number. Increasing the wall-to-fluid thermal conductivity ratio also results in lower Nusselt number. In relatively long and thick microtubes with high wall-to-fluid thermal conductivity ratio, the local Nusselt number exhibits minimum values in the entrance regions and at the end sections due to axial conduction effects. The analysis presented also demonstrate the significance of rarefaction, shear work, axial conduction, as well as the combined viscous dissipation and flow work effects on heat transfer parameters in a microtube gas flow. The combined flow work and viscous dissipation effects on heat transfer parameters are significant and result in a reduction in the Nusselt number. The shear work lowers the Nusselt number when heat is added to the fluid.


Author(s):  
Peixin Ye ◽  
Dinggen Li ◽  
Zihao Yu ◽  
Haifeng Zhang

In this paper, a modified lattice Boltzmann model that incorporates the effect of heat capacity is adopted to study the effects of a centered conducting body on natural convection of non-Newtonian fluid in a square cavity with time-periodic temperature distribution. The effects of power-law index, Rayleigh number, heat capacity ratio, thermal conductivity ratio, body size, temperature pulsating period and the temperature pulsating amplitude on fluid flow and heat transfer are analyzed in detail. The results showed that the increase of Rayleigh number and thermal conductivity ratio as well as the decrease of power-law index can strengthen both transient and global heat transfer, while the increase of heat capacitance of fluid to the solid wall can only enhance the transient heat transfer, and has little effect on the overall heat transfer. Further, the increase of body size will reduce both the transient heat transfer ratio and the overall heat transfer ratio. In addition, the decrease of temperature pulsating period can enhance the transient heat transfer, but it will slightly weaken the overall heat transfer. Finally, the results show that both the transient and the overall heat transfer ratio are increased with the increase of temperature pulsating amplitude.


2011 ◽  
Vol 312-315 ◽  
pp. 33-38
Author(s):  
M. Abkar ◽  
P. Forooghi ◽  
A. Abbassi

In this paper, forced convection in a channel lined with a porous layer is investigated. The main goal is to assess the effect of local thermal non-equilibrium condition on overall heat transfer in the channel. The effects of thermal conductivity of solid and thickness of porous layer are also studied. Flow assumed to be laminar and fully developed. The Brinkman-Forchheimer model for flow as well as the two equation energy model is used. The results showed that when the problem tends to local thermal equilibrium condition, heat transfer is enhanced due to heat conduction through solid phase. Another factor, which can facilitate the heat transfer, is the increase of the thermal conductivity of solid material. This trend is sensitive to the thickness of porous layer and modified Biot number, which is a measure (criterion) of local fluid to solid heat transfer. As thickness and modified Biot number increase, the Nusselt number becomes more sensitive to the thermal conductivity ratio.


Author(s):  
Abderrahim Bourouis ◽  
Abdeslam Omara ◽  
Said Abboudi

Purpose – The purpose of this paper is to provide a numerical study of conjugate heat transfer by mixed convection and conduction in a lid-driven enclosure with thick vertical porous layer. The effect of the relevant parameters: Richardson number (Ri=0.1, 1, 10) and thermal conductivity ratio (Rk=0.1, 1, 10, 100) are investigated. Design/methodology/approach – The studied system is a two dimensional lid-driven enclosure with thick vertical porous layer. The left vertical wall of the enclosure is allowed to move in its own plane at a constant velocity. The enclosure is heated from the right vertical wall isothermally. The left and the right vertical walls are isothermal but temperature of the outside of the right vertical wall is higher than that of the left vertical wall. Horizontal walls are insulated. The governing equations are solved by finite volume method and the SIMPLE algorithm. Findings – From the finding results, it is observed that: for the two studied cases, heat transfer rate along the hot wall is a decreasing function of thermal conductivity ratio irrespective of Richardson numbers contrary to the heat transfer rate along the fluid-porous layer interface which is an increasing function of thermal conductivity ratio. At forced convection dominant regime, the difference between heat transfer rate for upward and downward moving wall is insensitive to the thermal conductivity ratio. For downward moving wall, average Nusselt number is higher than that of upward moving wall. Practical implications – Some applications: building applications, furnace design, nuclear reactors, air solar collectors. Originality/value – From the bibliographic work and the authors’ knowledge, the conjugate mixed convection in lid-driven partially porous enclosures has not yet been investigated which motivates the present work that represent a continuation of the preceding investigations.


Author(s):  
Yubai Xiao ◽  
Hu Zhang ◽  
Junmei Wu

Abstract In recent years, hybrid nanofluids, as a new kind of working fluid, have been widely studied because they possessing better heat transfer performance than single component nanofluids when prepared with proper constituents and proportions. The application of hybrid nanofluids in nuclear power system as a working fluid is an effective way of improving the capability of In-Vessel Retention (IVR) when the reactor is in a severe accident. In order to obtain hybrid nanofluids with excellent heat transfer performance, three kinds of hybrid nanofluids with high thermal conductivity are measured by transient plane source method, and their viscosity and stability are also investigated experimentally. These experimental results are used to evaluate the heat transfer efficiency of hybrid nanofluids. The results show that: (1) The thermal conductivity of hybrid nanofluids increases with increasing temperature and volume concentration. When compared to the base fluid, the thermal conductivity of Al2O3-CuO/H2O, Al2O3-C/H2O and AlN-TiO2/H2O nanofluids at 0.25% volume concentration increased by 36%, 24%, and 22%, respectively. (2) Surfactants can improve the stability of hybrid nanofluids. The Zeta potential value is related to the thermal conductivity of the hybrid nanofluids, and it could be used to explain the relationship between the thermal conductivity of the hybrid nanofluids and the dispersion. It also could provide a reference for subsequent screening of high thermal conductivity nanofluids. (3) The addition of C/H2O can effectively reduce the dynamic viscosity coefficient of hybrid nanofluids. (4) The analysis of heat transfer efficiency of the hybrid nanofluids found that both Al2O3-CuO/H2O and Al2O3-C/H2O have better heat transfer ability than water under certain mixing conditions. This study is conducive to further optimizing hybrid nanofluids and its application to the In-Vessel Retention in severe reactor accidents.


1998 ◽  
Vol 22 (3) ◽  
pp. 269-289
Author(s):  
M. Lacroix

A numerical study has been conducted for the heat transfer from a discrete heat source by natural convection in air above coupled with conduction dominated melting of a phase change material (PCM) below via a wall of finite thermal diffusivity. Results indicate that the presence of a PCM layer underneath the wall significantly delays the temperature rise of the heat source. The time delay increases as the thermal diffusivity of the wail material decreases and as the thickness of the PCM layer increases. For high thermal conductivity wall materials [Formula: see text] the steady state heat source temperatures are similar and independent of the PCM layer. On the other hand, for [Formula: see text], the steady state temperatures are higher and dependent on the thickness of the PCM layer. A correlation is proposed in terms of the thickness of the PCM layer and the thermal conductivity ratio of the wall.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1702 ◽  
Author(s):  
C. S. Huang ◽  
Chia-Wang Yu ◽  
R. H. Chen ◽  
Chun-Ta Tzeng ◽  
Chi-Ming Lai

This study experimentally investigates the natural convection heat transfer performance of a rectangular thermosyphon with an aspect ratio of 3.5. The experimental model is divided into a loop body, a heating section, a cooling section, and two adiabatic sections. The heating section and the cooling section are located in the vertical legs of the rectangular loop. The length of the vertical heating section and the length of the upper and lower horizontal insulation sections are 700 mm and 200 mm, respectively, and the inner diameter of the loop is 11 mm. The relevant parameters and their ranges are as follows: the input thermal power is 30–60 W (with a heat flux in the range of 60–3800 W/m2); the temperature in the cooling section is 30, 40, or 50 °C; and the potential difference between the hot and cold sections is 5, 11, or 18 for the cooling section lengths of 60, 45, and 30 cm, respectively. The results indicate that the value of the dimensionless heat transfer coefficient, the Nusselt number, is generally between 5 and 10. The heating power is the main factor affecting the natural convection intensity of the thermosyphon.


Sign in / Sign up

Export Citation Format

Share Document