scholarly journals Pupillary response reflects attentional modulation to sound after emotional arousal

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Nakakoga ◽  
Kengo Shimizu ◽  
Junya Muramatsu ◽  
Takashi Kitagawa ◽  
Shigeki Nakauchi ◽  
...  

AbstractThere have been various studies on the effects of emotional visual processing on subsequent non-emotional auditory stimuli. A previous study with EEG has shown that responses to deviant sounds presented after presenting negative pictures collected more attentional resources than those for neutral pictures. To investigate such a compelling between emotional and cognitive processing, this study aimed to examined pupillary responses to an auditory stimulus after a positive, negative, or neutral emotional state was elicited by an emotional image. An emotional image was followed by a beep sound that was either repetitive or unexpected, and the pupillary dilation was measured. As a result, we found that the early component of the pupillary response to the beep sound was larger for negative and positive emotional states than the neutral emotional state, whereas the late component was larger for the positive emotional state than the negative and neutral emotional states. In addition, the peak latency of the pupillary response was earlier for negative than neutral or positive images. Further, to compensate for the disadvantage of low-temporal resolution of the pupillary data, the pupillary responses were deconvoluted and used in the analysis. The deconvolution analysis of pupillary responses confirmed that the responses to beep sound were more likely to be modulated by the emotional state rather than being influenced by the short presentation interval between the images and sounds. These findings suggested that pupil size index modulations in the compelling situation between emotional and cognitive processing.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yih-Giun Cherng ◽  
Talia Baird ◽  
Jui-Tai Chen ◽  
Chin-An Wang

Abstract Pupil dilation is consistently evoked by affective and cognitive processing, and this dilation can result from sympathetic activation or parasympathetic inhibition. The relative contributions of the sympathetic and parasympathetic systems on the pupillary response induced by emotion and cognition may be different. Sympathetic and parasympathetic activity is regulated by global luminance level. Higher luminance levels lead to greater activation of the parasympathetic system while lower luminance levels lead to greater activation of the sympathetic system. To understand the contributions of the sympathetic and parasympathetic nervous systems to pupillary responses associated with emotion and saccade preparation, emotional auditory stimuli were presented following the fixation cue whose color indicated instruction to perform a pro- or anti-saccade while varying the background luminance level. Pupil dilation was evoked by emotional auditory stimuli and modulated by arousal level. More importantly, greater pupil dilation was observed with a dark background, compared to a bright background. In contrast, pupil dilation responses associated with saccade preparation were larger with the bright background than the dark background. Together, these results suggest that arousal-induced pupil dilation was mainly mediated by sympathetic activation, but pupil dilation related to saccade preparation was primarily mediated by parasympathetic inhibition.


1993 ◽  
Vol 76 (3) ◽  
pp. 851-855 ◽  
Author(s):  
Rémy Versace ◽  
Jean-Marc Monteil ◽  
Louis Mailhot

This study explored the link between emotional state and attentional resources. A neutral or negative emotional state was induced in 50 subjects, then they performed a path-learning task followed by a word-memorization task while reproducing the prelearned path. Memory performance was assessed on a free-recall test. Analysis indicated that a previous induction of a negative emotional state disrupted path learning. Recall was not significantly affected by the subjects' emotional states, but recall was higher for subjects who had automatized the path prior to memorizing the words.


1981 ◽  
Vol 52 (2) ◽  
pp. 425-426 ◽  
Author(s):  
James S. Taylor

The present investigation was two-fold in purpose: to test the hypothesis that auditory mental loading would require greater mental effort and larger resultant pupillary dilation than visual mental loading, and to provide evidence for the feasibility of super 8-mm photography for pupillometric research. Subjects were 30 college students. Stimuli to be stored in memory and repeated aloud in reverse order were seven-digit number series. Series were either presented visually from 35-mm slides or auditorily from a taped recording. Pupillary responses were recorded with a super 8-mm movie camera. Pupil diameter was measured to the neatest centimeter on a projected image. Results did not support the hypothesis, but methodologically strong evidence supported 8-mm photography for pupillometry research.


2017 ◽  
Vol 76 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Hélène Maire ◽  
Renaud Brochard ◽  
Jean-Luc Kop ◽  
Vivien Dioux ◽  
Daniel Zagar

Abstract. This study measured the effect of emotional states on lexical decision task performance and investigated which underlying components (physiological, attentional orienting, executive, lexical, and/or strategic) are affected. We did this by assessing participants’ performance on a lexical decision task, which they completed before and after an emotional state induction task. The sequence effect, usually produced when participants repeat a task, was significantly smaller in participants who had received one of the three emotion inductions (happiness, sadness, embarrassment) than in control group participants (neutral induction). Using the diffusion model ( Ratcliff, 1978 ) to resolve the data into meaningful parameters that correspond to specific psychological components, we found that emotion induction only modulated the parameter reflecting the physiological and/or attentional orienting components, whereas the executive, lexical, and strategic components were not altered. These results suggest that emotional states have an impact on the low-level mechanisms underlying mental chronometric tasks.


2020 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Ramtin Zargari Marandi ◽  
Camilla Ann Fjelsted ◽  
Iris Hrustanovic ◽  
Rikke Dan Olesen ◽  
Parisa Gazerani

The affective dimension of pain contributes to pain perception. Cognitive load may influence pain-related feelings. Eye tracking has proven useful for detecting cognitive load effects objectively by using relevant eye movement characteristics. In this study, we investigated whether eye movement characteristics differ in response to pain-related feelings in the presence of low and high cognitive loads. A set of validated, control, and pain-related sounds were applied to provoke pain-related feelings. Twelve healthy young participants (six females) performed a cognitive task at two load levels, once with the control and once with pain-related sounds in a randomized order. During the tasks, eye movements and task performance were recorded. Afterwards, the participants were asked to fill out questionnaires on their pain perception in response to the applied cognitive loads. Our findings indicate that an increased cognitive load was associated with a decreased saccade peak velocity, saccade frequency, and fixation frequency, as well as an increased fixation duration and pupil dilation range. Among the oculometrics, pain-related feelings were reflected only in the pupillary responses to a low cognitive load. The performance and perceived cognitive load decreased and increased, respectively, with the task load level and were not influenced by the pain-related sounds. Pain-related feelings were lower when performing the task compared with when no task was being performed in an independent group of participants. This might be due to the cognitive engagement during the task. This study demonstrated that cognitive processing could moderate the feelings associated with pain perception.


2021 ◽  
Author(s):  
Natalia Albuquerque ◽  
Daniel S. Mills ◽  
Kun Guo ◽  
Anna Wilkinson ◽  
Briseida Resende

AbstractThe ability to infer emotional states and their wider consequences requires the establishment of relationships between the emotional display and subsequent actions. These abilities, together with the use of emotional information from others in social decision making, are cognitively demanding and require inferential skills that extend beyond the immediate perception of the current behaviour of another individual. They may include predictions of the significance of the emotional states being expressed. These abilities were previously believed to be exclusive to primates. In this study, we presented adult domestic dogs with a social interaction between two unfamiliar people, which could be positive, negative or neutral. After passively witnessing the actors engaging silently with each other and with the environment, dogs were given the opportunity to approach a food resource that varied in accessibility. We found that the available emotional information was more relevant than the motivation of the actors (i.e. giving something or receiving something) in predicting the dogs’ responses. Thus, dogs were able to access implicit information from the actors’ emotional states and appropriately use the affective information to make context-dependent decisions. The findings demonstrate that a non-human animal can actively acquire information from emotional expressions, infer some form of emotional state and use this functionally to make decisions.


Semiotica ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amitash Ojha ◽  
Charles Forceville ◽  
Bipin Indurkhya

Abstract Both mainstream and art comics often use various flourishes surrounding characters’ heads. These so-called “pictorial runes” (also called “emanata”) help convey the emotional states of the characters. In this paper, using (manipulated) panels from Western and Indian comic albums as well as neutral emoticons and basic shapes in different colors, we focus on the following two issues: (a) whether runes increase the awareness in comics readers about the emotional state of the character; and (b) whether a correspondence can be found between the types of runes (twirls, spirals, droplets, and spikes) and specific emotions. Our results show that runes help communicate emotion. Although no one-to-one correspondence was found between the tested runes and specific emotions, it was found that droplets and spikes indicate generic emotions, spirals indicate negative emotions, and twirls indicate confusion and dizziness.


2011 ◽  
Vol 17 (4) ◽  
pp. 449-456 ◽  
Author(s):  
AM Smerbeck ◽  
J Parrish ◽  
D Serafin ◽  
EA Yeh ◽  
B Weinstock-Guttman ◽  
...  

Background: Children with multiple sclerosis (MS) can suffer significant cognitive deficits. This study investigates the sensitivity and validity in pediatric MS of two visual processing tests borrowed from the adult literature, the Brief Visuospatial Memory Test-Revised (BVMTR) and the Symbol Digit Modalities Test (SDMT). Objective: To test the hypothesis that visual processing is disproportionately impacted in pediatric MS by comparing performance with that of healthy controls on the BVMTR and SDMT. Methods: We studied 88 participants (43 MS, 45 controls) using a neuropsychological assessment battery including measures of intelligence, language, visual memory, and processing speed. Patients and demographically matched controls were compared to determine which tests are most sensitive in pediatric MS. Results: Statistically significant differences were found between the MS and control groups on BVMTR Total Learning ( t (84) = 4.04, p < 0.001, d = 0.87), BVMTR Delayed Recall ( t (84) = 4.45, p < 0.001, d = 0.96), and SDMT ( t (38) = 2.19, p = 0.035, d = 0.69). No significant differences were found between groups on confrontation naming or general intellectual ability. Validity coefficients exploring correlation between BVMTR, SDMT, and disease characteristics were consistent with the adult literature. Conclusions: This study found that BVMTR and SDMT may be useful in assessing children and adolescents with MS.


2018 ◽  
Author(s):  
Sean Youn ◽  
Corey Okinaka ◽  
Lydia M Mäthger

AbstractThe little skate Leucoraja erinacea has elaborately shaped pupils, whose characteristics and functions have not been studied extensively. It has been suggested that such pupil shapes may camouflage the eye; yet, no experimental evidence has been presented to support this claim. Skates are bottom-dwellers that often bury into the substrate with their eyes protruding. If these pupils serve any camouflage function, we expect there to be a pupillary response related to the spatial frequency (“graininess”) of the background against which the eye is viewed. Here, we tested whether skate pupils dilate or constrict in response to background spatial frequency. We placed skates on background substrates with different spatial frequencies and recorded pupillary responses at three light intensities. In experiment 1, the skates’ pupillary response to three artificial checkerboards of different spatial frequencies was recorded. Skates responded to changing light intensity with pupil dilation/constriction; yet, their pupils did not change in response to spatial frequency. In experiment 2, in which skates could bury into three natural substrates with different spatial frequencies, such that their eyes protruded above the substrate, the pupils showed a subtle but statistically significant response to changes in substrate spatial frequency. Given the same light intensity, the smaller the spatial frequency of the natural substrate, the more constricted the pupil. While light intensity is the primary factor determining pupil dilation, these experiments are the first to show that pupils also change in response to background spatial frequency, which suggests that the pupil may aid in camouflaging the eye.


Sign in / Sign up

Export Citation Format

Share Document