scholarly journals The impacts of freeze–thaw cycles on saturated hydraulic conductivity and microstructure of saline–alkali soils

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenshuo Xu ◽  
Kesheng Li ◽  
Longxiao Chen ◽  
Weihang Kong ◽  
Chuanxiao Liu

AbstractStudy on the microscopic structure of saline–alkali soil can reveal the change of its permeability more deeply. In this paper, the relationship between permeability and microstructure of saline–alkali soil with different dry densities and water content in the floodplain of southwestern Shandong Province was studied through freeze–thaw cycles. A comprehensive analysis of soil samples was conducted using particle-size distribution, X-ray diffraction, freeze–thaw cycles test, saturated hydraulic conductivity test and mercury intrusion porosimetry. The poor microstructure of soil is the main factor that leads to the category of micro-permeable soil. The porosity of the local soil was only 6.19–11.51%, and ultra-micropores (< 0.05 μm) and micropores (0.05–2 μm) dominated the pore size distribution. Soil saturated water conductivity was closely related to its microscopic pore size distribution. As the F–T cycles progressed, soil permeability became stronger, with the reason the pore size distribution curve began to shift to the small pores (2–10 μm) and mesopores (10–20 μm), and this effect was the most severe when the freeze–thaw cycle was 15 times. High water content could promote the effects of freeze–thaw cycles on soil permeability and pore size distribution, while the increase of dry density could inhibit these effects. The results of this study provide a theoretical basis for the remediation of saline–alkali soil in the flooded area of Southwest Shandong.

2021 ◽  
Author(s):  
Wenshuo Xu ◽  
Kesheng Li ◽  
Longxiao Chen ◽  
Weihang Kong ◽  
Chuanxiao Liu

Abstract Study on the microscopic structure of saline-alkali soil can reveal the change of its permeability more deeply. In this paper, the relationship between permeability and microstructure of saline-alkali soil with different dry densities and water content in the floodplain of southwestern Shandong Province was studied through freeze-thaw cycles. A comprehensive analysis of soil samples was conducted using particle-size distribution, X-Ray diffraction, Freeze-Thaw cycle test, saturated hydraulic conductivity test and mercury intrusion porosimetry. The poor microstructure of soil is the main factor that leads to the category of micro-permeable soil. The porosity of the local soil was only 6.19–11.51%, and ultra-micropores (< 0.05 µm) and micropores (0.05-2 µm) dominated the pore size distribution. Soil saturated water conductivity was closely related to its microscopic pore size distribution. As the F-T cycles progressed, soil permeability became stronger, with the reason the pore size distribution curve began to shift to the small pores (2–10 µm) and mesopores (10–20 µm), and this effect was the most severe when the freeze-thaw cycle was 15 times. High water content could promote the effects of freeze-thaw cycles on soil permeability and pore size distribution, while the increase of dry density could inhibit these effects. The results of this study provide a theoretical basis for the remediation of saline-alkali soil in the flooded area of Southwest Shandong.


2020 ◽  
Vol 10 (24) ◽  
pp. 8981
Author(s):  
Yuhang Liu ◽  
Dongqing Li ◽  
Lei Chen ◽  
Feng Ming

Ice lens is the key factor which determines the frost heave in engineering construction in cold regions. At present, several theories have been proposed to describe the formation of ice lens. However, most of these theories analyzed the ice lens formation from a macroscopic view and ignored the influence of microscopic pore sizes and structures. Meanwhile, these theories lacked the support of measured data. To solve this problem, the microscopic crystallization stress was converted into the macro mean stress through the principle of statistics with the consideration of pore size distribution. The mean stress was treated as the driving force of the formation of ice lens and induced into the criterion of ice lens formation. The influence of pore structure and unfrozen water content on the mean stress was analyzed. The results indicate that the microcosmic crystallization pressure can be converted into the macro mean stress through the principle of statistics. Larger mean stress means the ice lens will be formed easier in the soil. The mean stress is positively correlated with initial water content. At the same temperature, an increase to both the initial water content and the number of pores can result in a larger mean stress. Under the same initial water content, mean stress increases with decreasing temperature. The result provides a theoretical basis for studying ice lens formation from the crystallization theory.


Author(s):  
Mozhen Hu ◽  
Yu-Jun Cui ◽  
Yunzhi Tan

Metakaolin has been widely used as pozzolanic additive to improve the pozzolanic activity of lime-based products. In this study, normal standard Proctor compaction test was performed on metakaolin with (5% lime) and without (0% lime) lime addition. The changes in stiffness, suction and microstructure with remoulding water content were investigated on statically compacted samples. Results show that lime-treated metakaolin exhibits one and half-peak compaction curve, while untreated metakaolin exhibits common one-peak compaction curve. The uncommon shape of the compaction curve of the treated metakaolin can be explained by the non-fully developed soil suction when water is not continuous. Treated and untreated samples compacted at both dry and wet of optimum show uni-modal pore size distribution characteristics, indicating the absence of aggregates. This is related to the specific thermal treatment, forming separate metakaolin platelets and leading to a modified uniform structure with diffuse platelets. The soil stiffness is rather dominated by the number of particle contacts or soil dry density, the effect of suction being insignificant. For the suction changes, on the dry side, the effect of pore size distribution prevails facing the effect of water content, while on wet side it is the effect of water content that becomes prevailing.


2020 ◽  
Vol 172 ◽  
pp. 20008
Author(s):  
Koki Yamada ◽  
Chiemi Iba ◽  
Tomoko Uno ◽  
Kazuma Fukui ◽  
Daisuke Ogura

The former Koshien Hotel is an historic Japanese architectural structure, where two different tuffs called Nikkaseki and Tatsuyamaishi were used to build the exterior. Despite its cultural significance, the building’s exterior is deteriorating in many ways, with water permeation being the main factor. In this study, the hygrothermal properties of both Nikkaseki and Tatsuyamaishi were measured in order to examine the correlation between deterioration mechanisms and the tuff characteristics in detail. The basic physical properties, pore size distribution, vapor permeability, hydraulic conductivity, and sorption isotherm were measured. The results of a comparison of two tuffs led us to hypothesize that the main reason behind Nikkaseki’s deterioration is expansive freezing, while that of Tatsuyamaishi is caused by repeating dehydration or dry-wet cycles.


2015 ◽  
Vol 52 (6) ◽  
pp. 808-811 ◽  
Author(s):  
C.W.W. Ng ◽  
J.L. Coo

The focus of this note is to investigate the hydraulic conductivity behavior of clay mixed with nanomaterials. Two different nanomaterials — namely, gamma-aluminum oxide powder (γ-Al2O3) and nano-copper oxide (CuO) — were selected and mixed with clay at different percentages (i.e., 2%, 4%, and 6%). Hydraulic conductivity tests were carried out in a flexible wall permeameter following the ASTM D5084 standard. Mercury intrusion porosimetry (MIP) tests were also carried out to determine the pore-size distribution. At 2% of γ-Al2O3 and nano-CuO, the hydraulic conductivity of clay decreased 30% and 45%, respectively. As the proportion of the nanomaterial increases, the reduction of hydraulic conductivity becomes less prominent as flow paths devoid of nanomaterials are unlikely. Reduction of hydraulic conductivity is due to the pores of clay being clogged by the nanomaterial. Pore-size distribution curves show that the largest pore size reduced by 20% when clay was mixed with 4% nano-CuO.


2021 ◽  
Author(s):  
Selina Walle ◽  
Thomas Iserloh ◽  
Manuel Seeger

&lt;p&gt;The study deals with the unsaturated hydraulic conductivity of soils within the scope of the Diverfarming-Project, funded by the EU commission (Horizon 2020 grant agreement no 728003). For this reason, the field work took place in the examined vineyard of the Wawerner Jesuitenberg near Kanzem in the Saar-Mosel valley (Rhineland-Palatinate, Germany). The mentioned parameter is one of the most important specific factors of the hydrological cycle to characterize soil hydraulic properties in the unsaturated soil zone. A mini disc infiltrometer was used to measure the conductivity values at different suctions. The purpose of this study is to determine the plausibility of the fundamentals and the analytical expression of the unsaturated conductivity models in a nearly skeletal soil of schist. In this regard, the mathematical expressions of Mualem (1976), van Genuchten (1980) and Zhang (1997) are focused on calculating the unsaturated hydraulic conductivity. The two variables &amp;#945; and n are analysed in order to better compare between literature specifications and the explicit calculated data of the vineyard&amp;#8217;s soil. As a result, the various developments of &amp;#945; are similar thus the significant difference is based on the value of n. Nevertheless, in consideration of these frame conditions the models represent a suitable mathematical expression of the unsaturated hydraulic conductivity. Furthermore, a range of parameters affecting this conductivity is analysed, particularly with regard to the applied variable soil and cultivation management under the grapevines in the vineyard. Also, the rock fragment cover and the pore size distribution are taken into account. In this context the soil compaction and modified pore size distribution in the wheel tracks stand out due to salient unsaturated hydraulic conductivities at higher tensions. In particular, the stone cover of the contact surface influence the characteristics of the analysed conductivity. Additionally, the connection of stone cover, management and pore size distribution creates a mixture of affected parameters of the unsaturated hydraulic conductivity.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res, 12, 513&amp;#8211;522, https://doi.org/10.1029/WR012i003p00513, 1976.&lt;/p&gt;&lt;p&gt;Van Genuchten, M.T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892&amp;#8211;898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.&lt;/p&gt;&lt;p&gt;Zhang, R.: Determination of Soil Sorptivity and Hydraulic Conductivity from the Disk Infiltrometer, Soil Sci. Soc. Am. J., 61, 1024&amp;#8211;1030, https://doi.org/10.2136/sssaj1997.03615995006100040005x, 1997.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document