scholarly journals Label-free photothermal disruption of cytotoxic aggregates rescues pathology in a C. elegans model of Huntington’s disease

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitry A. Nedosekin ◽  
TsungYen Chen ◽  
Srinivas Ayyadevara ◽  
Vladimir P. Zharov ◽  
Robert J. Shmookler Reis

AbstractAggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in a C. elegans nematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.

2017 ◽  
Vol 124 (1) ◽  
Author(s):  
Haichao Yu ◽  
Lugui Cui ◽  
Kai Zhang ◽  
Jun Yang ◽  
Hanyang Li

1994 ◽  
Vol 7 (3) ◽  
pp. 175-188 ◽  
Author(s):  
Taiqing Qiu ◽  
Chang-Lin Tien ◽  
Mark A. Shannon ◽  
Richard E. Russo

2004 ◽  
Vol 43 (8A) ◽  
pp. 5337-5346 ◽  
Author(s):  
Takuji Tada ◽  
Tsuyoshi Asahi ◽  
Masaaki Tsuchimori ◽  
Osamu Watanabe ◽  
Hiroshi Masuhara

2021 ◽  
Author(s):  
Arielle Planchette ◽  
Cédric Schmidt ◽  
Olivier Burri ◽  
Mercedes Gomez de Agüero ◽  
Aleksandra Radenovic ◽  
...  

Abstract The limitations of 2D microscopy constrain our ability to observe and understand tissue-wide networks that are, by nature, 3-dimensional. Optical projection tomography enables the acquisition of large volumes (ranging from micrometres to centimetres) in various tissues, with label-free capacities for the observation of auto-fluorescent signals as well fluorescent-labelled targets of interest in multiple channels. We present a multi-modal workflow for the characterization of both structural and quantitative parameters of the mouse small intestine. As proof of principle, we evidence its applicability for imaging the mouse intestinal immune compartment and surrounding mucosal structures. We quantify the volumetric size and spatial distribution of Isolated Lymphoid Follicles (ILFs) and quantify density of villi throughout centimetre long segments of intestine. Furthermore, we exhibit the age- and microbiota-dependence for ILF development, and leverage a technique that we call reverse-OPT for identifying and homing in on regions of interest. Several quantification capabilities are displayed, including villous density in the autofluorescent channel and the size and spatial distribution of the signal of interest at millimetre-scale volumes. The concatenation of 3D image acquisition with the reverse-OPT sample preparation and a 2D high-resolution imaging modality adds value to interpretations made in 3D. This cross-modality referencing technique is found to provide accurate localisation of ROIs and to add value to interpretations made in 3D. Importantly, OPT may be used to identify sparsely-distributed regions of interest in large volumes whilst retaining compatibility with high-resolution microscopy modalities, including confocal microscopy. We believe this pipeline to be approachable for a wide-range of specialties, and to provide a new method for characterisation of the mouse intestinal immune compartment.


2014 ◽  
Vol 1 (1) ◽  
pp. 7-21
Author(s):  
S. N. Hoseinimotlagh ◽  
M. Jahedi

The fast ignition (FI) mechanism, in which a pellet containing the thermonuclear fuel is first compressed by a nanosecond laser pulse, and then  irradiated by an intense "ignition" beam, initiated by a  high power picosecond laser pulse,  is one of the promising approaches to the realization of the inertial confinement fusion (ICF). If the ignition beam is composed of deuterons, an additional energy is delivered to the target, coming from fusion reactions of the beam-target type, directly initiated by particles from the ignition  beam .In this work, we choose the D+T fuel and  at first step we compute the average reactivity in terms of temperature for first time at second step we use the obtained results of step one and calculate the total deposited energy of deuteron beam inside the target fuel at available physical condition then in  third step we introduced the dynamical balance equation of D+T mixture and solve these nonlinear  differential coupled  equations versus time .In forth step we compute the power density and energy gain under physical optimum conditions and at final step we concluded that  maximum  energy deposited  in the target from D+T and D+D reaction are equal to  to19269.39061 keV and 39198.58043 keV respectively.  


Sign in / Sign up

Export Citation Format

Share Document