scholarly journals Soret and Dufour effects on a Casson nanofluid flow past a deformable cylinder with variable characteristics and Arrhenius activation energy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naila Shaheen ◽  
Hashim M. Alshehri ◽  
Muhammad Ramzan ◽  
Zahir Shah ◽  
Poom Kumam

AbstractIn this study, the effects of variable characteristics amalgamated with chemical reaction and Arrhenius activation energy are analyzed on a two-dimensional (2D) electrically conducting radiative Casson nanoliquid flow past a deformable cylinder embedded in a porous medium. The surface of the cylinder is deformable in the radial direction i.e., the z-axis. The impression of Soret and Dufour's effects boosts the transmission of heat and mass. The flow is analyzed numerically with the combined impacts of momentum slip, convective heat, and mass conditions. A numerical solution for the system of the differential equations is attained by employing the bvp4c function in MATLAB. The dimensionless protuberant parameters are graphically illustrated and discussed for the involved profiles. It is perceived that on escalating the velocity slip parameter and porosity parameter velocity field depreciates. Also, on escalating the radiation parameter and heat transfer Biot number a prominent difference is noticed in an upsurge of the thermal field. For growing values of Brownian motion and thermophoretic parameters, temperature field augments. On escalating the curvature parameter and porosity parameter, drag force coefficient upsurges. The outcome of the Soret number, mass transfer Biot number, and activation energy parameter is quite eminent on the concentration distribution for the sheet in comparison to the deformable cylinder. A comparative analysis of the present investigation with an already published work is also added to substantiate the envisioned problem.

2021 ◽  
Author(s):  
A. Wakif ◽  
I. L. Animasaun ◽  
Umair Khan ◽  
Ahmed Mohammed Alshehri

Abstract The current improvement in nanoscience and nanotechnology areas has attracted researchers' attention to biofuel, bioengineering, and biomedical and mechanical engineering applications. However, there is no report on the extension of Buongiorno's model incorporating the Cattaneo-Christov theory and the generalized Fick's law to reflect the significant impacts of Brownian motion, thermophoresis diffusion, thermal radiation, and activation energy. The governing partial differential equations (PDEs) suitable to model the case as mentioned above were converted into a unified set of ordinary differential equations (ODEs) by applying appropriate similarity transformations and solved numerically by using the Spectral Local Linearization Method (SLLM) and MATLAB in-built package. The SLLM numerical method provides robustness results with a higher level of exactness and low‐computational cost. It is worthy to conclude that the nanoparticles concentration distribution can be heightened considerably either by diminishing the Prandtl number and concentration relaxation parameter or increasing the values of nanoparticles concentration Biot number and activation energy parameter. An attractive reduction in the surface drag force coefficient is achievable via the intensifying values of the non-Newtonian parameter.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manoj Kumar Nayak ◽  
Sachin Shaw ◽  
H. Waqas ◽  
Taseer Muhammad

Purpose The purpose of this study is to investigate the Cattaneo-Christov double diffusion, multiple slips and Darcy-Forchheimer’s effects on entropy optimized and thermally radiative flow, thermal and mass transport of hybrid nanoliquids past stretched cylinder subject to viscous dissipation and Arrhenius activation energy. Design/methodology/approach The presented flow problem consists of the flow, heat and mass transportation of hybrid nanofluids. This model is featured with Casson fluid model and Darcy-Forchheimer model. Heat and mass transportations are represented with Cattaneo-Christov double diffusion and viscous dissipation models. Multiple slip (velocity, thermal and solutal) mechanisms are adopted. Arrhenius activation energy is considered. For graphical and numerical data, the bvp4c scheme in MATLAB computational tool along with the shooting method is used. Findings Amplifying curvature parameter upgrades the fluid velocity while that of porosity parameter and velocity slip parameter whittles down it. Growing mixed convection parameter, curvature parameter, Forchheimer number, thermally stratified parameter intensifies fluid temperature. The rise in curvature parameter and porosity parameter enhances the solutal field distribution. Surface viscous drag gets controlled with the rising of the Casson parameter which justifies the consideration of the Casson model. Entropy generation number and Bejan number upgrades due to growth in diffusion parameter while that enfeeble with a hike in temperature difference parameter. Originality/value To the best of the authors’ knowledge, this research study is yet to be available in the existing literature.


Author(s):  
Sarwe D. U. ◽  
Shanker B. ◽  
Mishra R. ◽  
Kumar R. S. V. ◽  
Shekar M. N. R.

The present study deals with the Blasius and Sakiadis flow of Casson hybrid nanoliquid over a vertically moving plate under the influence of magnetic effect and Joule heating. Here, we considered Silver and Copper as nanoparticles suspended in 50% Ethylene-Glycol (EG) as base fluid. Further, the Arrhenius activation energy and convective boundary conditions are taken into the account. The set of PDEs of the current model are converted into ODEs by using suitable similarity variables. The reduced ODEs are numerically solved with the help of RKF-45 method by adopting shooting scheme. The impact of various pertinent parameters on the fluid fields is deliberated graphically. The result outcomes reveal that, rise in values of Casson parameter diminishes the velocity gradient. The escalated values of magnetic parameter decline the velocity profile but reverse trend is detected in thermal and concentration profiles. Moreover, the augmentation in the activation energy parameter elevates the concentration profile.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Hina Gul ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu

Abstract The dynamics of partially ionized fluid flow subjected to the magnetic field are altogether distinct in comparison to the flow of natural fluids. Fewer studies are available in the literature discussing the alluring characteristics of the Hall effect and the Ion slip in nanofluid flows. Nevertheless, the flow of nanofluid flow with Hall and Ion slip effect integrated with activation energy, gyrotactic microorganisms, and Cattaneo–Christov heat flux is still scarce. To fill in this gap, our aim here is to examine the three dimensional electrically conducting Tangent hyperbolic bioconvective nanofluid flow with Hall and Ion slip under the influence of magnetic field and heat transmission phenomenon past a stretching sheet. Impacts of Cattaneo–Christov heat flux, Arrhenius activation energy, and chemical reaction are also considered here. For the conversion of a non-linear system to an ordinary one, pertinent transformations procedure is implemented. By using the bvp4c MATLAB function, these equations with the boundary conditions are worked out numerically. The significant impacts of prominent parameters on velocity, temperature, and concentration profiles are investigated through graphical illustrations. The results show that the velocity of the fluid is enhanced once the Ion slip and Hall parameters values are improved. Furthermore, the concentration is improved when the values of the activation energy parameter are enhanced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noor Saeed Khan ◽  
Qayyum Shah ◽  
Arif Sohail ◽  
Zafar Ullah ◽  
Attapol Kaewkhao ◽  
...  

AbstractThe current study characterizes the effects of Hall current, Arrhenius activation energy and binary chemical reaction on the rotating flow of hybrid nanofluid in two double disks. By the use of suitable similarity transformations, the system of partial differential equations and boundary conditions for hybrid nanofluid are transformed to ordinary differential equations which are solved through optimal homotopy analysis method. The intensified magnetic field and hybrid nanofluid performances are represented in three dimensional model with flow, heat and mass transfer. Radial velocity decreases and tangential velocity increases with the Hall parameter. Temperature rises with high values of rotation parameter while it decreases with the Prandtl number. Nanoparticles concentration enhances with the increments in Arrhenius activation energy parameter and stretching parameter due to lower disk. There exists a close and favorable harmony in the results of present and published work.


Author(s):  
Emmanuel Olurotimi Titiloye ◽  
Adeshina Taofeeq Adeosun ◽  
Jacob Abiodun Gbadeyan

This article investigates the combined effect of second-order velocity slip, Arrhenius activation energy and binary chemical reaction on reactive Casson nanofluid flow in a non-Darcian porous medium. The governing equations of the problem were first non-dimensionalized and later reduced to ordinary nonlinear differential equations by adopting a similarity transformation. The emerging nonlinear boundary value problem was solved by using Galerkin weighted residual method (GWRM). The obtained results were compared with those found in the literature to validate our method. The impact of pertinent parameters on the velocity component, temperature distribution and concentration profile are presented using graphs and were discussed. The computational results show that an increase in second order slip parameter significantly results to an increase in the temperature as well as nanoparticle concentration profiles, while it reduces the velocity profile.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 702
Author(s):  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Anigere Marikempaiah Jyothi ◽  
Ballajja Chandrappa Prasannakumara ◽  
Ioannis E. Sarris

The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.


Sign in / Sign up

Export Citation Format

Share Document