scholarly journals Microwave-assisted photooxidation of sulfoxides

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Matsukawa ◽  
Atsuya Muranaka ◽  
Tomotaka Murayama ◽  
Masanobu Uchiyama ◽  
Hikaru Takaya ◽  
...  

AbstractWe demonstrated microwave-assisted photooxidation of sulfoxides to the corresponding sulfones using ethynylbenzene as a photosensitizer. Efficiency of the photooxidation was higher under microwave irradiation than under conventional thermal heating conditions. Under the conditions, ethynylbenzene promoted the oxidation more efficiently than conventional photosensitizers benzophenone, anthracene, and rose bengal. Ethynylbenzene, whose T1 state is extremely resistant to intersystem crossing to the ground state, was suitable to this reaction because spectroscopic and related reported studies suggested that this non-thermal effect was caused by elongating lifetime of the T1 state by microwave. This is the first study in which ethynylbenzene is used as a photosensitizer in a microwave-assisted photoreaction.

2009 ◽  
Vol 13 (08n09) ◽  
pp. 888-892 ◽  
Author(s):  
Vincent Chaleix ◽  
Pierre Couleaud ◽  
Vincent Sol ◽  
Rachida Zerrouki ◽  
Sandra Alves ◽  
...  

A mild method for O-alkylation of meso-hydroxyphenylporphyrin has been developed using microwave irradiation. This method is clean and efficient for many substrates and results in significant improvement in reaction yield and in a dramatic decrease in reaction time in comparison to thermal heating.


2013 ◽  
Vol 859 ◽  
pp. 337-340
Author(s):  
Qiang Wang ◽  
Guo Dong Liu ◽  
Shan Shan Gong ◽  
Qi Sun

Treatment of protected furanoses with FeCl3·6H2O in acetonitrile with microwave irradiation provides an efficient and mild protocol for regioselective removal of anomeric O-acetyl group. This method features cost efficient reagents, simple procedures, and high yields. The experimental results proved that microwave irradiation could notably shorten the reaction time and increase the product yield compared to the conventional thermal heating condition.


2020 ◽  
Author(s):  
Tomislav Rovis ◽  
Benjamin D. Ravetz ◽  
Nicholas E. S. Tay ◽  
Candice Joe ◽  
Melda Sezen-Edmonds ◽  
...  

We describe a new family of catalysts that undergo direct ground state singlet to excited state triplet excitation with IR light, leading to photoredox catalysis without the energy waste associated with intersystem crossing. The finding allows a mole scale reaction in batch using infrared irradiation.


2019 ◽  
Vol 16 (3) ◽  
pp. 194-201 ◽  
Author(s):  
Renu Bala ◽  
Vandana Devi ◽  
Pratibha Singh ◽  
Navjot Kaur ◽  
Pawandeep Kaur ◽  
...  

Background: Tetrahydroindazole, a member of the fused-pyrazole system, is a least studied class of heterocyclic compounds owing to its scarcity in nature. However, a large number of synthetically prepared tetrahydroindazoles are known to show a variety of biological activities such as interleukin- 2 inducible T-Cell kinase inhibitors, AMPA receptor positive allosteric modulators, antitumor, antituberculosis, anti-inflammatory and antimicrobial activities. Vilsmeier-Haack reaction is one of the most important chemical reactions used for formylation of electron rich arenes. Even though Vilsmeier- Haack reaction was studied on a wide variety of hydrazones derived from active methylene compounds, literature lacks the examples of the use of 4-substituted cyclohexanones as a substrate for the synthesis of 4,5,6,7-tetrahydroindazoles. The study of the reaction of Vilsmeier-Haack reagent with hydrazones derived from cyclic keto compounds having active methylene has been considered the interested topic of investigation. In the present study, ethyl cyclohexanone-4-carboxylate was treated with one equivalent of various hydrazines for two hours and the resulted hydrazones were further treated with an OPC-VH reagent (Vilsmeier-Haack reagent isolated from phthaloyl dichloride and N,Ndimethylformamide) afforded 4,5,6,7-tetrahydroindazoles in excellent yields. The synthesized compounds 4a-f and 5a-f were screened for their antioxidant activities using the DPPH radical scavenging assay. The target compounds were synthesized regioselectively using 4+1 approach in excellent yields. A number of experiments using both conventional heating as well as microwave irradiation methods were tried and on comparison, microwave irradiation method was found excellent in terms of easy work up, high chemical yields, shortened reaction times, clean and, no by-products formation. Some of the synthesized compounds showed significant antioxidant activity. The microwave assisted synthesis of 4,5,6,7-tetrahydroindazoles from ethyl cyclohexanone-4-carboxylate has been reported under mild conditions in excellent yield. Easy work up, high chemical yield, shortened reaction times, clean and no by-products formation are the major advantages of this protocol. These advantages may make this method useful for chemists who are interested in developing novel 4,5,6,7-tetrahydroindazole based drugs.


2020 ◽  
Vol 7 (3) ◽  
pp. 183-195
Author(s):  
Musa Özil ◽  
Emre Menteşe

Background: Benzoxazole, containing a 1,3-oxazole system fused with a benzene ring, has a profound effect on medicinal chemistry research owing to its important pharmacological activities. On the other hand, the benzoxazole derivative has exhibited important properties in material science. Especially in recent years, microwave-assisted synthesis is a technique that can be used to increase diversity and quick research in modern chemistry. The utilization of microwave irradiation is beneficial for the synthesis of benzoxazole in recent years. In this focused review, we provide a metaanalysis of studies on benzoxazole in different reaction conditions, catalysts, and starting materials by microwave technique so far, which is different from conventional heating. Methods: Synthesis of different kind of benzoxazole derivatives have been carried out by microwave irradiation. The most used method to obtain benzoxazoles is the condensation of 2-aminophenol or its derivatives with aldehydes, carboxylic acids, nitriles, isocyanates, and aliphatic amines. Results: Benzoxazole system and its derivatives have exhibited a broad range of pharmacological properties. Thus, many scientists have remarked on the importance of the synthesis of different benzoxazole derivatives. Conventional heating is a relatively inefficient and slow method to convey energy in orientation to the reaction medium. However, the microwave-assisted heating technique is a more effective interior heating by straight coupling of microwave energy with the molecules. Conclusion: In this review, different studies were presented on the recent details accessible in the microwave- assisted techniques on the synthesis of the benzoxazole ring. It presents all examples of such compounds that have been reported from 1996 to the present. Benzoxazoles showed an extensive class of chemical substances not only in pharmaceutical chemistry but also in dyestuff, polymer industries, agrochemical, and optical brighteners. Thus the development of fast and efficient achievement of benzoxazoles with a diversity of substituents in high yield is getting more noteworthy. As shown in this review, microwave-assisted synthesis of benzoxazoles is a very effective and useful technique.


2020 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Raúl Eduardo Gordillo-Cruz ◽  
Liliana Gonzalez-Reyes ◽  
Milton Coporo-Reyes ◽  
Nieves Zavala-Segovia ◽  
Bernardo A. Frontana-Uribe ◽  
...  

An array of 2,4-disubstituted thiazolines was obtained through Asinger reaction approach from the straightforward treatment of diverse aldehydes/ketones with 1-mercaptopropan-2-one, in the presence of NH3 assisted by microwave irradiation, displaying similar and sometimes higher yields, as well as shorter reaction times that traditional Asinger reaction conditions at room and lower temperatures.


1999 ◽  
Vol 23 (2) ◽  
pp. 118-119
Author(s):  
Vaishali Chakraborty ◽  
Manobjyoti Bordoloi

An efficient and mild methodology for the oxidation of alcohols to the corresponding carbonyl functions is described using pyridinium chlorochromate under microwave irradiation.


2005 ◽  
Vol 2005 (1) ◽  
pp. 27-28 ◽  
Author(s):  
Jaime Charris ◽  
Arthur Barazarte ◽  
José Domínguez ◽  
Neira Gamboa

A rapid method for the preparation of N-aryl-2-methylthio-4-oxo-1,4-dihydro quinoline-3-carbonitriles (2a–e) and N-aryl-3-methylthio-4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxides (2f–o) is reported. The cyclization is accelerated by microwave irradiation under solvent free conditions in the presence of K2CO3.


Sign in / Sign up

Export Citation Format

Share Document