scholarly journals Quantitative evaluation of posture control in rats with inferior olive lesions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tetsuro Funato ◽  
Yota Sato ◽  
Yamato Sato ◽  
Soichiro Fujiki ◽  
Shinya Aoi ◽  
...  

AbstractImpairment of inferior olivary neurons (IONs) affects whole-body movements and results in abnormal gait and posture. Because IONs are activated by unpredicted motion rather than regular body movements, the postural dysfunction caused by ION lesions is expected to involve factors other than simple loss of feedback control. In this study, we measured the postural movements of rats with pharmacological ION lesions (IO rats) trained to stand on their hindlimbs. The coordination of body segments as well as the distribution and frequency characteristics of center of mass (COM) motion were analyzed. We determined that the lesion altered the peak properties of the power spectrum density of the COM, whereas changes in coordination and COM distribution were minor. To investigate how the observed properties reflected changes in the control system, we constructed a mathematical model of the standing rats and quantitatively identified the control system. We found an increase in linear proportional control and a decrease in differential and nonlinear control in IO rats compared with intact rats. The dystonia-like changes in body stiffness explain the nature of the linear proportional and differential control, and a disorder in the internal model is one possible cause of the decrease in nonlinear control.

2012 ◽  
Vol 26 (25) ◽  
pp. 1246010 ◽  
Author(s):  
TATIANA FILIPPOVA

The dynamics and properties of set-valued states of differential control systems with uncertainties in initial data are studied. It is assumed that the dynamical system has a special structure, in which nonlinear terms in the right-hand sides of related differential equations are quadratic in state coordinates. We construct external and internal ellipsoidal estimates of reachable sets of nonlinear control system and find differential equations of proposed ellipsoidal estimates of reachable sets of nonlinear control system. The results obtained for quadratic system nonlinearities are extended to other types of control systems under uncertainty.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Alain G. de Souza ◽  
Luiz C. G. de Souza

The design of the spacecraft Attitude Control System (ACS) becomes more complex when the spacecraft has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel. The interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion during translational and/or rotational manoeuvre can change the spacecraft center of mass position damaging the ACS pointing accuracy. This type of problem can be considered as a Fluid-Structure Interaction (FSI) where some movable or deformable structure interacts with an internal fluid. This paper develops a mathematical model for a rigid-flexible satellite with tank with fuel. The slosh dynamics is modelled using a common pendulum model and it is considered to be unactuated. The control inputs are defined by a transverse body fixed force and a moment about the centre of mass. A comparative investigation designing the satellite ACS by the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) methods is done. One has obtained a significant improvement in the satellite ACS performance and robustness of what has been done previously, since it controls the rigid-flexible satellite and the fuel slosh motion, simultaneously.


Author(s):  
Zachary Merrill ◽  
April Chambers ◽  
Rakié Cham

Body segment parameters (BSPs) such as segment mass and center of mass are used as inputs in ergonomic design and biomechanical models to predict the risk of musculoskeletal injuries. These models have been shown to be sensitive to the BSP values used as inputs, demonstrating the necessity of using accurate and representative parameters. This study aims to provide accurate BSPs by quantifying the impact of age and body mass index on torso and thigh mass and center of mass in working adults using whole body dual energy x-ray absorptiometry (DXA) scan data. The results showed significant effects of gender, age, and body mass index (BMI) on torso and thigh mass and center of mass, as well as significant effects of age and BMI within genders, indicating that age, gender, and BMI need to be taken into account when predicting BSPs in order to calculate representative ergonomic and biomechanical model outputs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emmanuelle Bellot ◽  
Antoine Garnier-Crussard ◽  
Elodie Pongan ◽  
Floriane Delphin-Combe ◽  
Marie-Hélène Coste ◽  
...  

AbstractSome of the behavioral disorders observed in Parkinson’s disease (PD) may be related to an altered processing of social messages, including emotional expressions. Emotions conveyed by whole body movements may be difficult to generate and be detected by PD patients. The aim of the present study was to compare valence judgments of emotional whole body expressions in individuals with PD and in healthy controls matched for age, gender and education. Twenty-eight participants (13 PD patients and 15 healthy matched control participants) were asked to rate the emotional valence of short movies depicting emotional interactions between two human characters presented with the “Point Light Displays” technique. To ensure understanding of the perceived scene, participants were asked to briefly describe each of the evaluated movies. Patients’ emotional valence evaluations were less intense than those of controls for both positive (p < 0.001) and negative (p < 0.001) emotional expressions, even though patients were able to correctly describe the depicted scene. Our results extend the previously observed impaired processing of emotional facial expressions to impaired processing of emotions expressed by body language. This study may support the hypothesis that PD affects the embodied simulation of emotional expression and the potentially involved mirror neuron system.


Sign in / Sign up

Export Citation Format

Share Document