scholarly journals Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Matthew G. Iadanza ◽  
Bob Schiffrin ◽  
Paul White ◽  
Matthew A. Watson ◽  
Jim E. Horne ◽  
...  

AbstractThe β-barrel assembly machinery (BAM) catalyses the folding and insertion of β-barrel outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria by mechanisms that remain unclear. Here, we present an ensemble of cryoEM structures of the E. coli BamABCDE (BAM) complex in lipid nanodiscs, determined using multi-body refinement techniques. These structures, supported by single-molecule FRET measurements, describe a range of motions in the BAM complex, mostly localised within the periplasmic region of the major subunit BamA. The β-barrel domain of BamA is in a ‘lateral open’ conformation in all of the determined structures, suggesting that this is the most energetically favourable species in this bilayer. Strikingly, the BAM-containing lipid nanodisc is deformed, especially around BAM’s lateral gate. This distortion is also captured in molecular dynamics simulations, and provides direct structural evidence for the lipid ‘disruptase’ activity of BAM, suggested to be an important part of its functional mechanism.

2020 ◽  
Vol 16 (10) ◽  
pp. e1008355
Author(s):  
Jinchan Liu ◽  
James C. Gumbart

In Gram-negative bacteria, the folding and insertion of β-barrel outer membrane proteins (OMPs) to the outer membrane are mediated by the β-barrel assembly machinery (BAM) complex. Two leading models of this process have been put forth: the hybrid barrel model, which claims that a lateral gate in BamA’s β-barrel can serve as a template for incoming OMPs, and the passive model, which claims that a thinned membrane near the lateral gate of BamA accelerates spontaneous OMP insertion. To examine the key elements of these two models, we have carried out 45.5 μs of equilibrium molecular dynamics simulations of BamA with and without POTRA domains from Escherichia coli, Salmonella enterica, Haemophilus ducreyi and Neisseria gonorrhoeae, together with BamA’s homolog, TamA from E. coli, in their native, species-specific outer membranes. In these equilibrium simulations, we consistently observe membrane thinning near the lateral gate for all proteins. We also see occasional spontaneous lateral gate opening and sliding of the β-strands at the gate interface for N. gonorrhoeae, indicating that the gate is dynamic. An additional 14 μs of free-energy calculations shows that the energy necessary to open the lateral gate in BamA/TamA varies by species, but is always lower than the Omp85 homolog, FhaC. Our combined results suggest OMP insertion utilizes aspects of both the hybrid barrel and passive models.


2005 ◽  
Vol 187 (22) ◽  
pp. 7680-7686 ◽  
Author(s):  
Sheryl S. Justice ◽  
David A. Hunstad ◽  
Jill Reiss Harper ◽  
Amy R. Duguay ◽  
Jerome S. Pinkner ◽  
...  

ABSTRACT In Escherichia coli, FkpA, PpiA, PpiD, and SurA are the four known periplasmic cis-trans prolyl isomerases. These isomerases facilitate proper protein folding by increasing the rate of transition of proline residues between the cis and trans states. Genetic inactivation of all four periplasmic isomerases resulted in a viable strain that exhibited a decreased growth rate and increased susceptibility to certain antibiotics. Levels of the outer membrane proteins LamB and OmpA in the quadruple mutant were indistinguishable from those in the surA single mutant. In addition, expression of P and type 1 pili (adhesive organelles produced by uropathogenic strains of E. coli and assembled by the chaperone/usher pathway) were severely diminished in the absence of the four periplasmic isomerases. Maturation of the usher was significantly impaired in the outer membranes of strains devoid of all four periplasmic isomerases, resulting in a defect in pilus assembly. Moreover, this defect in pilus assembly and usher stability could be attributed to the absence of SurA. The data presented here suggest that the four periplasmic isomerases are not essential for growth under laboratory conditions but may have significant roles in survival in environmental and pathogenic niches, as indicated by the effect on pilus production.


2019 ◽  
Author(s):  
S. Jimmy Budiardjo ◽  
Jacqueline J. Deay ◽  
Anna L. Calkins ◽  
Virangika K. Wimalasena ◽  
Daniel Montezano ◽  
...  

AbstractThe double membrane architecture of Gram-negative bacteria forms a barrier that is effectively impermeable to extracellular threats. Accordingly, researchers have shown increasing interest in developing antibiotics that target the accessible, surface-exposed proteins embedded in the outer membrane. TolC forms the outer membrane channel of an antibiotic efflux pump in Escherichia coli. Drawing from prior observations that colicin E1, a toxin produced by and lethal to E. coli, can bind to the TolC channel, we investigate the capacity of colicin E1 fragments to ‘plug’ TolC and inhibit its efflux function. First, using single-molecule fluorescence, we show that colicin E1 fragments that do not include the cytotoxic domain localize at the cell surface. Next, using real-time efflux measurements and minimum inhibitory concentration assays, we show that exposure of wild-type E. coli to fragments of colicin E1 indeed disrupts TolC efflux and heightens bacterial susceptibility to four common classes of antibiotics. This work demonstrates that extracellular plugging of outer membrane transporters can serve as a novel method to increase antibiotic susceptibility. In addition to the utility of these protein fragments as starting points for the development of novel antibiotic potentiators, the variety of outer membrane protein colicin binding partners provides an array of options that would allow our method to be used to inhibit other outer membrane protein functions.SignificanceWe find that fragments of a protein natively involved in intraspecies bacterial warfare can be exploited to plug the E. coli outer membrane antibiotic efflux machinery. This plugging disables a primary form of antibiotic resistance. Given the diversity of bacterial species of similar bacterial warfare protein targets, we anticipate that this method of plugging is generalizable to disabling the antibiotic efflux of other proteobacteria. Moreover, given the diversity of the targets of bacterial warfare proteins, this method could be used for disabling the function of a wide variety of other bacterial outer membrane proteins.


2021 ◽  
Author(s):  
Steffen Wolf ◽  
Benedikt Sohmen ◽  
Björn Hellenkamp ◽  
Johann Thurn ◽  
Gerhard Stock ◽  
...  

We report on a study that combines advanced fluorescence methods with molecular dynamics simulations to cover timescales from nanoseconds to milliseconds for a large protein, the chaperone Hsp90.


2020 ◽  
Author(s):  
Oleg Ganichkin ◽  
Renee Vancraenenbroeck ◽  
Gabriel Rosenblum ◽  
Hagen Hofmann ◽  
Alexander S. Mikhailov ◽  
...  

AbstractThe mechano-chemical GTPase dynamin assembles on membrane necks of clathrin-coated vesicles into helical oligomers that constrict and eventually cleave the necks in a GTP-dependent way. It remains not clear whether dynamin achieves this via molecular motor activity and, if so, by what mechanism. Here, we used ensemble kinetics, single-molecule FRET and molecular dynamics simulations to characterize dynamin’s GTPase cycle and determine the powerstroke strength. The results were incorporated into a coarse-grained structural model of dynamin filaments on realistic membrane templates. Working asynchronously, dynamin’s motor modules were found to collectively constrict a membrane tube. Force is generated by motor dimers linking adjacent helical turns and constriction is accelerated by their strain-dependent dissociation. Consistent with experiments, less than a second is needed to constrict a membrane tube to the hemi-fission radius. Thus, a membrane remodeling mechanism relying on cooperation of molecular ratchet motors driven by GTP hydrolysis has been revealed.


2020 ◽  
Vol 295 (51) ◽  
pp. 17646-17658
Author(s):  
Fang-Yuan Teng ◽  
Ting-Ting Wang ◽  
Hai-Lei Guo ◽  
Ben-Ge Xin ◽  
Bo Sun ◽  
...  

RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3′-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5′-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.


Sign in / Sign up

Export Citation Format

Share Document