scholarly journals PKN1 promotes synapse maturation by inhibiting mGluR-dependent silencing through neuronal glutamate transporter activation

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hiroki Yasuda ◽  
Hikaru Yamamoto ◽  
Kenji Hanamura ◽  
Mona Mehruba ◽  
Toshio Kawamata ◽  
...  

AbstractAbnormal metabotropic glutamate receptor (mGluR) activity could cause brain disorders; however, its regulation has not yet been fully understood. Here, we report that protein kinase N1 (PKN1), a protein kinase expressed predominantly in neurons in the brain, normalizes group 1 mGluR function by upregulating a neuronal glutamate transporter, excitatory amino acid transporter 3 (EAAT3), and supports silent synapse activation. Knocking out PKN1a, the dominant PKN1 subtype in the brain, unmasked abnormal input-nonspecific mGluR-dependent long-term depression (mGluR-LTD) and AMPA receptor (AMPAR) silencing in the developing hippocampus. mGluR-LTD was mimicked by inhibiting glutamate transporters in wild-type mice. Knocking out PKN1a decreased hippocampal EAAT3 expression and PKN1 inhibition reduced glutamate uptake through EAAT3. Also, synaptic transmission was immature; there were more silent synapses and fewer spines with shorter postsynaptic densities in PKN1a knockout mice than in wild-type mice. Thus, PKN1 plays a critical role in regulation of synaptic maturation by upregulating EAAT3 expression.

2009 ◽  
Vol 77 (9) ◽  
pp. 3578-3587 ◽  
Author(s):  
Roberta Colicchio ◽  
Susanna Ricci ◽  
Florentia Lamberti ◽  
Caterina Pagliarulo ◽  
Chiara Pagliuca ◽  
...  

ABSTRACT Experimental animal models of bacterial meningitis are useful to study the host-pathogen interactions occurring at the cerebral level and to analyze the pathogenetic mechanisms behind this life-threatening disease. In this study, we have developed a mouse model of meningococcal meningitis based on the intracisternal inoculation of bacteria. Experiments were performed with mouse-passaged serogroup C Neisseria meningitidis. Survival and clinical parameters of infected mice and microbiological and histological analysis of the brain demonstrated the establishment of meningitis with features comparable to those of the disease in humans. When using low bacterial inocula, meningococcal replication in the brain was very efficient, with a 1,000-fold increase of viable counts in 18 h. Meningococci were also found in the blood, spleens, and livers of infected mice, and bacterial loads in different organs were dependent on the infectious dose. As glutamate uptake from the host has been implicated in meningococcal virulence, mice were infected intracisternally with an isogenic strain deficient in the ABC-type l-glutamate transporter GltT. Noticeably, the mutant was attenuated in virulence in mixed infections, indicating that wild-type bacteria outcompeted the GltT-deficient meningococci. The data show that the GltT transporter plays a role in meningitis and concomitant systemic infection, suggesting that meningococci may use l-glutamate as a nutrient source and as a precursor to synthesize the antioxidant glutathione.


Blood ◽  
2012 ◽  
Vol 119 (15) ◽  
pp. 3604-3612 ◽  
Author(s):  
Markus Winterberg ◽  
Esther Rajendran ◽  
Stefan Baumeister ◽  
Sven Bietz ◽  
Kiaran Kirk ◽  
...  

Human erythrocytes have a low basal permeability to L-glutamate and are not known to have a functional glutamate transporter. Here, treatment of human erythrocytes with arsenite was shown to induce the uptake of L-glutamate and D-aspartate, but not that of D-glutamate or L-alanine. The majority of the arsenite-induced L-glutamate influx was via a high-affinity, Na+-dependent system showing characteristics of members of the “excitatory amino acid transporter” (EAAT) family. Western blots and immunofluorescence assays revealed the presence of a member of this family, EAAT3, on the erythrocyte membrane. Erythrocytes infected with the malaria parasite Plasmodium falciparum take up glutamate from the extracellular environment. Although the majority of uptake is via a low-affinity Na+-independent pathway there is, in addition, a high-affinity uptake component, raising the possibility that the parasite activates the host cell glutamate transporter.


2012 ◽  
Vol 302 (6) ◽  
pp. C880-C891 ◽  
Author(s):  
Rikke Søgaard ◽  
Ivana Novak ◽  
Nanna MacAulay

Increased ammonium (NH4+/NH3) in the brain is a significant factor in the pathophysiology of hepatic encephalopathy, which involves altered glutamatergic neurotransmission. In glial cell cultures and brain slices, glutamate uptake either decreases or increases following acute ammonium exposure but the factors responsible for the opposing effects are unknown. Excitatory amino acid transporter isoforms EAAT1, EAAT2, and EAAT3 were expressed in Xenopus oocytes to study effects of ammonium exposure on their individual function. Ammonium increased EAAT1- and EAAT3-mediated [3H]glutamate uptake and glutamate transport currents but had no effect on EAAT2. The maximal EAAT3-mediated glutamate transport current was increased but the apparent affinities for glutamate and Na+ were unaltered. Ammonium did not affect EAAT3-mediated transient currents, indicating that EAAT3 surface expression was not enhanced. The ammonium-induced stimulation of EAAT3 increased with increasing extracellular pH, suggesting that the gaseous form NH3 mediates the effect. An ammonium-induced intracellular alkalinization was excluded as the cause of the enhanced EAAT3 activity because 1) ammonium acidified the oocyte cytoplasm, 2) intracellular pH buffering with MOPS did not reduce the stimulation, and 3) ammonium enhanced pH-independent cysteine transport. Our data suggest that the ammonium-elicited uptake stimulation is not caused by intracellular alkalinization or changes in the concentrations of cotransported ions but may be due to a direct effect on EAAT1/EAAT3. We predict that EAAT isoform-specific effects of ammonium combined with cell-specific differences in EAAT isoform expression may explain the conflicting reports on ammonium-induced changes in glial glutamate uptake.


2004 ◽  
Vol 181 (2) ◽  
pp. 233-244 ◽  
Author(s):  
T Takarada ◽  
E Hinoi ◽  
VJ Balcar ◽  
H Taniura ◽  
Y Yoneda

Neither expression nor functionality is clear in peripheral tissues with the molecular machineries required for excitatory neurotransmitter signaling by L-glutamate (Glu) in the central nervous system, while a recent study has shown that several Glu receptors are functionally expressed in the rat testis. This fact prompted us to explore the possible functional expression in the rat testis of the Glu transporters usually responsible for the regulation of extracellular Glu concentrations in the brain. RT-PCR revealed the expression, in the rat testis, of mRNA for five different subtypes of Glu transporters, in addition to that for particular subtypes of ionotropic and metabotropic Glu receptors. Glutamate transporter-1 (GLT-1) was different in the brain from that in the testis in terms of molecular sizes on Northern and Western blot analyses. In situ hybridization as well as immunohistochemical analysis showed localized expression of glutamate aspartate transporter at interstitial spaces and GLT-1 at elongated spermatids in the rat testis respectively. The expression of mRNA was localized for excitatory amino acid transporter-5 at the basal compartment of the seminiferous tubule in the rat testis. [(3)H]Glu was accumulated in testicular crude mitochondrial fractions in a temperature- and sodium-dependent saturable manner with pharmacological profiles similar to those shown in brain crude mitochondrial fractions. These results suggested that particular subtypes of central Glu transporters for the regulation of extracellular Glu concentrations in the rat testis could be constitutively and functionally expressed.


2017 ◽  
Vol 114 (21) ◽  
pp. 5491-5496 ◽  
Author(s):  
Shannon R. Hinson ◽  
Ian C. Clift ◽  
Ningling Luo ◽  
Thomas J. Kryzer ◽  
Vanda A. Lennon

Aquaporin-4 (AQP4) water channel-specific IgG distinguishes neuromyelitis optica (NMO) from multiple sclerosis and causes characteristic immunopathology in which central nervous system (CNS) demyelination is secondary. Early events initiating the pathophysiological outcomes of IgG binding to astrocytic AQP4 are poorly understood. CNS lesions reflect events documented in vitro following IgG interaction with AQP4: AQP4 internalization, attenuated glutamate uptake, intramyelinic edema, interleukin-6 release, complement activation, inflammatory cell recruitment, and demyelination. Here, we demonstrate that AQP4 internalization requires AQP4-bound IgG to engage an astrocytic Fcγ receptor (FcγR). IgG-lacking Fc redistributes AQP4 within the plasma membrane and induces interleukin-6 release. However, AQP4 endocytosis requires an activating FcγR’s gamma subunit and involves astrocytic membrane loss of an inhibitory FcγR, CD32B. Interaction of the IgG–AQP4 complex with FcγRs triggers coendocytosis of the excitatory amino acid transporter 2 (EAAT2). Requirement of FcγR engagement for internalization of two astrocytic membrane proteins critical to CNS homeostasis identifies a complement-independent, upstream target for potential early therapeutic intervention in NMO.


2002 ◽  
Vol 22 (5) ◽  
pp. 569-575 ◽  
Author(s):  
Christine Gebhardt ◽  
Rafael Körner ◽  
Uwe Heinemann

Hypoxia leads to a rapid increase in vesicular release of glutamate. In addition, hypoxic glutamate release might be caused by reversed operation of neuronal glutamate transporters. An increase in extracellular glutamate concentration might be an important factor in generating anoxic depolarizations (AD) and subsequent neuronal damage. To study the AD and the vesicular release in hippocampal slices from CD1 wild-type mice and mice in which the neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1) had been knocked out, the authors performed recordings of field potentials and patch clamp recordings of CA1 pyramidal cells. Latency to anoxic depolarizations was enhanced in EAAC1−/− mice, whereas the hypoxia-induced increase in miniature excitatory postsynaptic current frequency occurred with similarly short latencies and to a similar extent in control and mutated animals. Additional block of glial glutamate uptake with TBOA (dl-threo-β-benzyloxyaspartate), a nontransportable and potent inhibitor, dramatically reduced the latency to onset of AD and abolished the difference between wild-type mice and EAAC1−/− mice. The authors conclude that the neuronal glutamate transporter greatly influences the latency to generation of AD. Because ADs are not prevented in EAAC1-deficient mice, vesicular release mechanisms also seem to be involved. They become prominent when glial glutamate transport is blocked.


2021 ◽  
Vol 22 (15) ◽  
pp. 7822
Author(s):  
Anton N. Shuvaev ◽  
Olga S. Belozor ◽  
Oleg I. Mozhei ◽  
Elena D. Khilazheva ◽  
Andrey N. Shuvaev ◽  
...  

Spinocerebellar ataxias are a family of fatal inherited diseases affecting the brain. Although specific mutated proteins are different, they may have a common pathogenetic mechanism, such as insufficient glutamate clearance. This function fails in reactive glia, leading to excitotoxicity and overactivation of NMDA receptors. Therefore, NMDA receptor blockers could be considered for the management of excitotoxicity. One such drug, memantine, currently used for the treatment of Alzheimer’s disease, could potentially be used for the treatment of other forms of neurodegeneration, for example, spinocerebellar ataxias (SCA). We previously demonstrated close parallels between optogenetically induced cerebellar degeneration and SCA1. Here we induced reactive transformation of cerebellar Bergmann glia (BG) using this novel optogenetic approach and tested whether memantine could counteract changes in BG and Purkinje cell (PC) morphology and expression of the main glial glutamate transporter—excitatory amino acid transporter 1 (EAAT1). Reactive BG induced by chronic optogenetic stimulation presented increased GFAP immunoreactivity, increased thickness and decreased length of its processes. Oral memantine (~90 mg/kg/day for 4 days) prevented thickening of the processes (1.57 to 1.81 vs. 1.62 μm) and strongly antagonized light-induced reduction in their average length (186.0 to 150.8 vs. 171.9 μm). Memantine also prevented the loss of the key glial glutamate transporter EAAT1 on BG. Finally, memantine reduced the loss of PC (4.2 ± 0.2 to 3.2 ± 0.2 vs. 4.1 ± 0.3 cells per 100 μm of the PC layer). These results identify memantine as potential neuroprotective therapeutics for cerebellar ataxias.


2020 ◽  
Vol 123 (5) ◽  
pp. 1828-1837
Author(s):  
Gregory W. Bligard ◽  
James DeBrecht ◽  
Robert G. Smith ◽  
Peter D. Lukasiewicz

Excitatory amino acid transporter 5 (EAAT5) glutamate transporters have a chloride channel that is strongly activated by glutamate, which modulates excitatory signaling. We found that EAAT5 is a major contributor to feedback inhibition on rod bipolar cells. Inhibition to rod bipolar cells is also mediated by GABA and glycine. GABA and glycine mediate the early phase of feedback inhibition, and EAAT5 mediates a more delayed inhibition. Together, inhibitory transmitters and EAAT5 coordinate to mediate feedback inhibition, controlling neuronal output.


Sign in / Sign up

Export Citation Format

Share Document