scholarly journals Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ben P. Harvey ◽  
Ro Allen ◽  
Sylvain Agostini ◽  
Linn J. Hoffmann ◽  
Koetsu Kon ◽  
...  

AbstractHuman activities are rapidly changing the structure and function of coastal marine ecosystems. Large-scale replacement of kelp forests and coral reefs with turf algal mats is resulting in homogenous habitats that have less ecological and human value. Ocean acidification has strong potential to substantially favour turf algae growth, which led us to examine the mechanisms that stabilise turf algal states. Here we show that ocean acidification promotes turf algae over corals and macroalgae, mediating new habitat conditions that create stabilising feedback loops (altered physicochemical environment and microbial community, and an inhibition of recruitment) capable of locking turf systems in place. Such feedbacks help explain why degraded coastal habitats persist after being initially pushed past the tipping point by global and local anthropogenic stressors. An understanding of the mechanisms that stabilise degraded coastal habitats can be incorporated into adaptive management to better protect the contribution of coastal systems to human wellbeing.

Author(s):  
James A. Estes ◽  
M. Tim Tinker ◽  
Terrie M. Williams

Sea otters are the only fully marine-living mustelid and the smallest extant marine mammal. They have the highest mass-specific metabolic rate of any marine mammal, which coupled with the lack of blubber for insulator and energy storage, relegates them to operating as an extreme income strategist, and appears to have led to a life history tactic in which pregnancy rate is fixed while reproductive success varies with the mother’s body condition at the time of birth, which triggers a decision immediately post-partum to care for or abandon her pup. When resources are limiting, sea otters assume highly individualized diets, which are inherited matrilineally. Sea otters exert strong limiting influences on their macroinvertebrate prey, leading to far reaching indirect effects on the structure and function of coastal marine ecosystems. This chapter reviews and synthesizes the interplay between sea otter energetics and life histories, diet and foraging behaviour, and ecosystem influences.


2015 ◽  
Vol 12 (16) ◽  
pp. 4895-4911 ◽  
Author(s):  
D. Krause-Jensen ◽  
C. M. Duarte ◽  
I. E. Hendriks ◽  
L. Meire ◽  
M. E. Blicher ◽  
...  

Abstract. The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification, and large-scale assessments of pH and the saturation state for aragonite (Ωarag) have led to the notion that the Arctic Ocean is already close to a corrosive state. In high-latitude coastal waters the regulation of pH and Ωarag is, however, far more complex than offshore because increased biological activity and input of glacial meltwater affect pH. Effects of ocean acidification on calcifiers and non-calcifying phototrophs occupying coastal habitats cannot be derived from extrapolation of current and forecasted offshore conditions, but they require an understanding of the regimes of pH and Ωarag in their coastal habitats. To increase knowledge of the natural variability in pH in the Arctic coastal zone and specifically to test the influence of benthic vegetated habitats, we quantified pH variability in a Greenland fjord in a nested-scale approach. A sensor array logging pH, O2, PAR, temperature and salinity was applied on spatial scales ranging from kilometre scale across the horizontal extension of the fjord; to 100 m scale vertically in the fjord, 10–100 m scale between subtidal habitats with and without kelp forests and between vegetated tidal pools and adjacent vegetated shores; and to centimetre to metre scale within kelp forests and millimetre scale across diffusive boundary layers of macrophyte tissue. In addition, we assessed the temporal variability in pH on diurnal and seasonal scales. Based on pH measurements combined with point samples of total alkalinity, dissolved inorganic carbon and relationships to salinity, we also estimated variability in Ωarag. Results show variability in pH and Ωarag of up to 0.2–0.3 units at several scales, i.e. along the horizontal and vertical extension of the fjord, between seasons and on a diel basis in benthic habitats and within 1 m3 of kelp forest. Vegetated intertidal pools exhibited extreme diel pH variability of > 1.5 units and macrophyte diffusive boundary layers a pH range of up to 0.8 units. Overall, pelagic and benthic metabolism was an important driver of pH and Ωarag producing mosaics of variability from low levels in the dark to peak levels at high irradiance generally appearing favourable for calcification. We suggest that productive coastal environments may form niches of high pH in a future acidified Arctic Ocean.


2020 ◽  
Vol 656 ◽  
pp. 163-180 ◽  
Author(s):  
KM Norderhaug ◽  
K Filbee-Dexter ◽  
C Freitas ◽  
SR Birkely ◽  
L Christensen ◽  
...  

Understanding the effects of ecological disturbances in coastal habitats is crucial and timely as these are anticipated to increase in intensity and frequency in the future due to increasing human pressure. In this study we used directed kelp trawling as a scientific tool to quantify the impacts of broad-scale disturbance on community structure and function. We tested the ecosystem-wide effects of this disturbance in a BACI design using two 15 km2 areas. The disturbance had a substantial impact on the kelp forests in this study, removing 2986 tons of kelp and causing a 26% loss of total kelp canopy at trawled stations. This loss created a 67% reduction of epiphytes, an 89% reduction of invertebrates and altered the fish populations living within these habitats. The effect of habitat loss on fish was variable and depended on how the different species used the habitat structure. Our results show that large-scale experimental disturbances on habitat-forming species have ecological consequences that extend beyond the decline of the single species to affect multiple trophic levels of the broader ecosystem. Our findings have relevance for understanding how increasing anthropogenic disturbances, including kelp trawling and increased storm frequency caused by climate change, may alter ecosystem structure and function.


2015 ◽  
Vol 12 (6) ◽  
pp. 4907-4945 ◽  
Author(s):  
D. Krause-Jensen ◽  
C. M. Duarte ◽  
I. E. Hendriks ◽  
L. Meire ◽  
M. E. Blicher ◽  
...  

Abstract. The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification (OA) and large-scale assessments of pH and the saturation state for aragonite (Ωarag) indicate that it is already close to corrosive states (Ωarag < 1). In high-latitude coastal waters the regulation of pH and Ωarag is far more complex than offshore because increased biological activity and input of glacial meltwater affect pH. As most calcifiers occupy coastal habitats, the assessment of risks from OA to these vulnerable organisms cannot be derived from extrapolation of current and forecasted offshore conditions, but requires an understanding of the regimes of pH and Ωarag in their coastal habitats. To increase knowledge of the natural variability of pH in the Arctic coastal zone and specifically to test the influence of benthic vegetated habitats, we quantified pH-variability in a Greenland fjord in a nested scale approach. A sensor array logging pH, O2, PAR, temperature and salinity was applied on spatial scales ranging from km-scale across the horizontal extension of the fjord, over 100 m scale vertically in the fjord, 10–100 m scale between subtidal habitats with and without kelp forests and between vegetated tidal pools and adjacent vegetated shores, to cm-m scale within kelp forests and mm-scale across boundary layers of macrophyte tissue. In addition, we assessed the temporal variability in pH on diurnal and seasonal scales. Based on pH-measurements combined with relationships between salinity, total alkalinity and dissolved inorganic carbon we also estimated variability of Ωarag. Results show variability in pH and Ωarag of up to 0.2–0.3 units at several scales, i.e. along the horizontal and vertical extension of the fjord, between seasons and on a diel basis in benthic habitats and within 1 m3 of kelp forest. Vegetated intertidal pools exhibited extreme diel pH variability of > 1.5 units and macrophyte boundary layers a pH-range of up to 0.8 units. Overall, Ωarag was favorable to calcification, and pelagic and benthic metabolism was an important driver of pH and Ωarag producing mosaics of variability from low levels in the dark to peak levels at high irradiance. We suggest that productive coastal environments may form niches of high pH in a future acidified Arctic Ocean.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117533 ◽  
Author(s):  
Rowan Haigh ◽  
Debby Ianson ◽  
Carrie A. Holt ◽  
Holly E. Neate ◽  
Andrew M. Edwards

2020 ◽  
Vol 648 ◽  
pp. 111-123
Author(s):  
C Layton ◽  
MJ Cameron ◽  
M Tatsumi ◽  
V Shelamoff ◽  
JT Wright ◽  
...  

Kelp forests in many regions are experiencing disturbance from anthropogenic sources such as ocean warming, pollution, and overgrazing. Unlike natural disturbances such as storms, anthropogenic disturbances often manifest as press perturbations that cause persistent alterations to the environment. One consequence is that some kelp forests are becoming increasingly sparse and fragmented. We manipulated patch size of the kelp Ecklonia radiata over 24 mo to simulate persistent habitat fragmentation and assessed how this influenced the demography of macro- and microscopic juvenile kelp within the patches. At the beginning of the experiment, patch formation resulted in short-term increases in E. radiata recruitment in patches <1 m2. However, recruitment collapsed in those same patches over the extended period, with no recruits observed after 15 mo. Experimental transplants of microscopic and macroscopic juvenile sporophytes into the patches failed to identify the life stage impacted by the reductions in patch size, indicating that the effects may be subtle and require extended periods to manifest, and/or that another life stage is responsible. Abiotic measurements within the patches indicated that kelp were less able to engineer the sub-canopy environment in smaller patches. In particular, reduced shading of the sub-canopy in smaller patches was associated with proliferation of sediments and turf algae, which potentially contributed to the collapse of recruitment. We demonstrate the consequences of short- and longer-term degradation of E. radiata habitats and conclude that habitat fragmentation can lead to severe disruptions to kelp demography.


2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pamela A. Fernández ◽  
Jorge M. Navarro ◽  
Carolina Camus ◽  
Rodrigo Torres ◽  
Alejandro H. Buschmann

AbstractThe capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3− assimilation, and enhanced expression of metabolic-genes involved in the NO3− and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3− and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species’ response to climate change.


2021 ◽  
Vol 110 ◽  
pp. 103396
Author(s):  
Donald J. DePaolo ◽  
Donald M. Thomas ◽  
John N. Christensen ◽  
Shuo Zhang ◽  
Franklin M. Orr ◽  
...  
Keyword(s):  

Author(s):  
Makoto Ogata

Abstract Carbohydrates play important and diverse roles in the fundamental processes of life. We have established a method for accurately and a large scale synthesis of functional carbohydrates with diverse properties using a unique enzymatic method. Furthermore, various artificial glycan-conjugated molecules have been developed by adding these synthetic carbohydrates to macromolecules and to middle and low molecular weight molecules with different properties. These glycan-conjugated molecules have biological activities comparable to or higher than those of natural compounds, and present unique functions. In this review, several synthetic glycan-conjugated molecules are taken as examples to show design, synthesis and function.


Sign in / Sign up

Export Citation Format

Share Document