scholarly journals Comparison of bias and resolvability in single-cell and single-transcript methods

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jayan Rammohan ◽  
Steven P. Lund ◽  
Nina Alperovich ◽  
Vanya Paralanov ◽  
Elizabeth A. Strychalski ◽  
...  

AbstractSingle-cell and single-transcript measurement methods have elevated our ability to understand and engineer biological systems. However, defining and comparing performance between methods remains a challenge, in part due to the confounding effects of experimental variability. Here, we propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is shared between methods. We demonstrate the utility of this framework by performing 12 different methods in parallel to measure the same underlying reference system for cellular response. We compare method performance using quantitative evaluations of bias and resolvability. We attribute differences in method performance to steps along the measurement process such as sample preparation, signal detection, and choice of measurand. Finally, we demonstrate how this framework can be used to benchmark different methods for single-transcript detection. The framework we present here provides a practical way to compare performance of any methods.

2020 ◽  
Author(s):  
Jayan Rammohan ◽  
Steven Lund ◽  
Nina Alperovich ◽  
Vanya Paralanov ◽  
Elizabeth Strychalski ◽  
...  

Abstract Single-cell and single-transcript measurement methods have elevated our ability to understand and engineer biological systems. However, defining and comparing performance between methods remains a challenge, in part due to the confounding effects of experimental variability. Here, we propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is shared between methods. We demonstrate the utility of this framework by performing 12 different methods in parallel to measure the same underlying reference system for cellular response. We compare method performance using quantitative evaluations of bias and resolvability. We attribute differences in method performance to steps along the measurement process such as sample preparation, signal detection, and choice of measurand. Finally, we demonstrate how this framework can be used to benchmark a new method for single-transcript detection. The framework we present here provides a practical way to compare performance of any methods.


2003 ◽  
Vol 773 ◽  
Author(s):  
Mo Yang ◽  
Shalini Prasad ◽  
Xuan Zhang ◽  
Mihrimah Ozkan ◽  
Cengiz S. Ozkan

AbstractExtracellular potential is an important parameter which indicates the electrical activity of live cells. Membrane excitability in osteoblasts plays a key role in modulating the electrical activity in the presence of chemical agents. The complexity of cell signal makes interpretation of the cellular response to a chemical agent very difficult. By analyzing shifts in the signal power spectrum, it is possible to determine a frequency spectrum also known as Signature Pattern Vectors (SPV) specific to a chemical. It is also essential to characterize single cell sensitivity and response time for specific chemical agents for developing detect-to-warn biosensors. We used a 4x4 multiple Pt microelectrode array to spatially position single osteoblast cells, by using a gradient AC field. Fast Fourier Transformation (FFT) and Wavelet Transformation (WT) analyses were used to extract information pertaining to the frequency of firing from the extracellular potential.


Author(s):  
Martin Philpott ◽  
Jonathan Watson ◽  
Anjan Thakurta ◽  
Tom Brown ◽  
Tom Brown ◽  
...  

AbstractHere we describe single-cell corrected long-read sequencing (scCOLOR-seq), which enables error correction of barcode and unique molecular identifier oligonucleotide sequences and permits standalone cDNA nanopore sequencing of single cells. Barcodes and unique molecular identifiers are synthesized using dimeric nucleotide building blocks that allow error detection. We illustrate the use of the method for evaluating barcode assignment accuracy, differential isoform usage in myeloma cell lines, and fusion transcript detection in a sarcoma cell line.


PROTEOMICS ◽  
2021 ◽  
pp. 2100198
Author(s):  
Michal Alexovič ◽  
Ján Sabo ◽  
Rémi Longuespée

2020 ◽  
Author(s):  
Brittany A. Goods ◽  
Michael H. Askenase ◽  
Erica Markarian ◽  
Hannah E. Beatty ◽  
Riley Drake ◽  
...  

ABSTRACTIntracerebral hemorrhage (ICH) is a devastating form of stroke with a high mortality rate and few treatment options. Discovery of therapeutic interventions has been slow given the challenges associated with studying acute injury, particularly over time, in the human brain. Inflammation induced by exposure of brain tissue to blood appears to be a major part of brain tissue injury. Here we longitudinally profiled blood and cerebral hematoma effluent from a patient enrolled in the Minimally Invasive Surgery with Thrombolysis in Intracerebral Haemorrhage Evacuation (MISTIEIII) trial, offering a rare window into the local and systemic immune responses to acute brain injury. Using single-cell RNA-sequencing, we characterized the local cellular response during ICH in the brain of a living patient at single-cell resolution for the first time. Our analysis revealed rapid shifts in the activation states of myeloid and T cells in the brain over time, suggesting that leukocyte responses are dynamically reshaped by the hematoma microenvironment. Interestingly, the patient had an asymptomatic re-bleed (second local exposure to blood) that our transcriptional data indicated occurred more than 30 hours prior to detection by CT scan. This case highlights the rapid immune dynamics in the brain after ICH and suggests that sensitive methods like scRNA-seq can inform our understanding of complex intracerebral events.


2021 ◽  
Author(s):  
Yongzheng Cong ◽  
Khatereh Motamedchaboki ◽  
Santosh A. Misal ◽  
Yiran Liang ◽  
Amanda J. Guise ◽  
...  

The combination of nanodroplet sample preparation, ultra-low-flow nanoLC, high-field asymmetric ion mobility spectrometry (FAIMS) and latest-generation mass spectrometry instrumentation provides dramatically improved single-cell proteome profiling.


2020 ◽  
Vol 231 (4) ◽  
pp. S232
Author(s):  
Dominic Henn ◽  
Kellen Chen ◽  
Zeshaan Maan ◽  
Sylvia Illouz ◽  
Clark A. Bonham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document