scholarly journals A single mode of population covariation associates brain networks structure and behavior and predicts individual subjects’ age

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Brent C. McPherson ◽  
Franco Pestilli

AbstractMultiple human behaviors improve early in life, peaking in young adulthood, and declining thereafter. Several properties of brain structure and function progress similarly across the lifespan. Cognitive and neuroscience research has approached aging primarily using associations between a few behaviors, brain functions, and structures. Because of this, the multivariate, global factors relating brain and behavior across the lifespan are not well understood. We investigated the global patterns of associations between 334 behavioral and clinical measures and 376 brain structural connections in 594 individuals across the lifespan. A single-axis associated changes in multiple behavioral domains and brain structural connections (r = 0.5808). Individual variability within the single association axis well predicted the age of the subject (r = 0.6275). Representational similarity analysis evidenced global patterns of interactions across multiple brain network systems and behavioral domains. Results show that global processes of human aging can be well captured by a multivariate data fusion approach.

Author(s):  
Brent McPherson ◽  
Franco Pestilli

AbstractMultiple human behaviors improve early in life, peaking in young adulthood, and declining thereafter. Several properties of brain structure and function progress similarly across the lifespan. Cognitive and neuroscience research has approached aging primarily using associations between a few behaviors, brain functions, and structures. Because of this, the multivariate, global factors relating brain and behavior across the lifespan are not understood. We investigated the global patterns of associations between 334 behavioral and clinical measures and 376 brain structural connections in 594 individuals across the lifespan. A single-axis associated changes in multiple behavioral domains and brain structural connections (r=0.5808). Individual variability within the single association-axis well predicted the subjects age (r=0.6275). Representational similarity analysis evidenced global patterns of interactions across multiple brain networks systems and behavioral domains. Results show that a global process of human aging is well captured by multivariate data fusion approach. [147]


2020 ◽  
Vol 17 (2) ◽  
pp. 141-157 ◽  
Author(s):  
Dubravka S. Strac ◽  
Marcela Konjevod ◽  
Matea N. Perkovic ◽  
Lucija Tudor ◽  
Gordana N. Erjavec ◽  
...  

Background: Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer’s disease. Objective: The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer’s disease. Method: PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. Results: We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer’s disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. Conclusion: Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer’s disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.


2021 ◽  
Vol 1 (1) ◽  
pp. 23-41
Author(s):  
Xi Jiang ◽  
Tuo Zhang ◽  
Shu Zhang ◽  
Keith M Kendrick ◽  
Tianming Liu

Abstract Folding of the cerebral cortex is a prominent characteristic of mammalian brains. Alterations or deficits in cortical folding are strongly correlated with abnormal brain function, cognition, and behavior. Therefore, a precise mapping between the anatomy and function of the brain is critical to our understanding of the mechanisms of brain structural architecture in both health and diseases. Gyri and sulci, the standard nomenclature for cortical anatomy, serve as building blocks to make up complex folding patterns, providing a window to decipher cortical anatomy and its relation with brain functions. Huge efforts have been devoted to this research topic from a variety of disciplines including genetics, cell biology, anatomy, neuroimaging, and neurology, as well as involving computational approaches based on machine learning and artificial intelligence algorithms. However, despite increasing progress, our understanding of the functional anatomy of gyro-sulcal patterns is still in its infancy. In this review, we present the current state of this field and provide our perspectives of the methodologies and conclusions concerning functional differentiation between gyri and sulci, as well as the supporting information from genetic, cell biology, and brain structure research. In particular, we will further present a proposed framework for attempting to interpret the dynamic mechanisms of the functional interplay between gyri and sulci. Hopefully, this review will provide a comprehensive summary of anatomo-functional relationships in the cortical gyro-sulcal system together with a consideration of how these contribute to brain function, cognition, and behavior, as well as to mental disorders.


2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Farzad V. Farahani ◽  
Magdalena Fafrowicz ◽  
Waldemar Karwowski ◽  
Bartosz Bohaterewicz ◽  
Anna Maria Sobczak ◽  
...  

Significant differences exist in human brain functions affected by time of day and by people’s diurnal preferences (chronotypes) that are rarely considered in brain studies. In the current study, using network neuroscience and resting-state functional MRI (rs-fMRI) data, we examined the effect of both time of day and the individual’s chronotype on whole-brain network organization. In this regard, 62 participants (39 women; mean age: 23.97 ± 3.26 years; half morning- versus half evening-type) were scanned about 1 and 10 h after wake-up time for morning and evening sessions, respectively. We found evidence for a time-of-day effect on connectivity profiles but not for the effect of chronotype. Compared with the morning session, we found relatively higher small-worldness (an index that represents more efficient network organization) in the evening session, which suggests the dominance of sleep inertia over the circadian and homeostatic processes in the first hours after waking. Furthermore, local graph measures were changed, predominantly across the left hemisphere, in areas such as the precentral gyrus, putamen, inferior frontal gyrus (orbital part), inferior temporal gyrus, as well as the bilateral cerebellum. These findings show the variability of the functional neural network architecture during the day and improve our understanding of the role of time of day in resting-state functional networks.


2021 ◽  
Vol 11 (10) ◽  
pp. 1286
Author(s):  
Francesco Di Russo ◽  
Stefania Lucia

The main aim of Cognitive Neuroscience is investigating how brain functions lead to mental processes and behavior [...]


Author(s):  
Nihal Toros Ntapiapis ◽  
Çağla Özkardeşler

Given increasing knowledge about how consumers communicate with texts, our understanding of how brain processes information remains relatively limited. Besides that, in today's world, advancing neuroscience-related technology and developments have changed the understanding of consumer behavior. In this regard, in the 1990s, consumer neuroscience and neuromarketing concepts were revealed. This new concept has brought a multi-disciplinary approach and new perceptions of human cognition and behavior. For measuring consumer behaviors through a new alternative method, research has started combining traditional marketing researches with these new methods. This chapter explores how typeface knowledge from the brain functions using neuroscience technology and the importance neurosciences methodologies have for readability research. Moreover, this chapter will evaluate how typefaces affect the purchase decision of the consumers and offer an integrative literature review.


Oikos ◽  
2019 ◽  
Vol 128 (11) ◽  
pp. 1537-1548 ◽  
Author(s):  
Karoline Ceron ◽  
Luiz Gustavo R. Oliveira‐Santos ◽  
Camila S. Souza ◽  
Daniel O. Mesquita ◽  
Francis L. S. Caldas ◽  
...  

1992 ◽  
Vol 12 (2) ◽  
pp. 115-137 ◽  
Author(s):  
Martha S. Stretton ◽  
Peter Salovey ◽  
John D. Mayer

Individual variability in concern about health plays a role in health-relevant cognition and behavior. Our research examined the latent structure of health concerns in two samples, one a young and healthy college sample and the other an older sample of medical outpatients. In both samples, health concerns reflected two underlying components: (a) fear and worry about health and (b) tendency to report problems. Correlations between these components and several individual difference variables theoretically linked to the experience of health concerns provided evidence of concurrent validity. The implications of the separability of reporting a health problem and worrying about its meaning are discussed, and recommendations for future research are offered.


2016 ◽  
Vol 113 (30) ◽  
pp. E4367-E4376 ◽  
Author(s):  
Joshua Sarfaty Siegel ◽  
Lenny E. Ramsey ◽  
Abraham Z. Snyder ◽  
Nicholas V. Metcalf ◽  
Ravi V. Chacko ◽  
...  

Deficits following stroke are classically attributed to focal damage, but recent evidence suggests a key role of distributed brain network disruption. We measured resting functional connectivity (FC), lesion topography, and behavior in multiple domains (attention, visual memory, verbal memory, language, motor, and visual) in a cohort of 132 stroke patients, and used machine-learning models to predict neurological impairment in individual subjects. We found that visual memory and verbal memory were better predicted by FC, whereas visual and motor impairments were better predicted by lesion topography. Attention and language deficits were well predicted by both. Next, we identified a general pattern of physiological network dysfunction consisting of decrease of interhemispheric integration and intrahemispheric segregation, which strongly related to behavioral impairment in multiple domains. Network-specific patterns of dysfunction predicted specific behavioral deficits, and loss of interhemispheric communication across a set of regions was associated with impairment across multiple behavioral domains. These results link key organizational features of brain networks to brain–behavior relationships in stroke.


Sign in / Sign up

Export Citation Format

Share Document