scholarly journals Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lorenzo Lagostina ◽  
Søs Frandsen ◽  
Barbara J. MacGregor ◽  
Clemens Glombitza ◽  
Longhui Deng ◽  
...  

AbstractTemperature and bioavailable energy control the distribution of life on Earth, and interact with each other due to the dependency of biological energy requirements on temperature. Here we analyze how temperature-energy interactions structure sediment microbial communities in two hydrothermally active areas of Guaymas Basin. Sites from one area experience advective input of thermogenically produced electron donors by seepage from deeper layers, whereas sites from the other area are diffusion-dominated and electron donor-depleted. In both locations, Archaea dominate at temperatures >45 °C and Bacteria at temperatures <10 °C. Yet, at the phylum level and below, there are clear differences. Hot seep sites have high proportions of typical hydrothermal vent and hot spring taxa. By contrast, high-temperature sites without seepage harbor mainly novel taxa belonging to phyla that are widespread in cold subseafloor sediment. Our results suggest that in hydrothermal sediments temperature determines domain-level dominance, whereas temperature-energy interactions structure microbial communities at the phylum-level and below.

2016 ◽  
Vol 7 ◽  
Author(s):  
Frederick Dowell ◽  
Zena Cardman ◽  
Srishti Dasarathy ◽  
Matthias Y. Kellermann ◽  
Julius S. Lipp ◽  
...  

2020 ◽  
Vol 367 (19) ◽  
Author(s):  
Vasil A Gaisin ◽  
Denis S Grouzdev ◽  
Maria S Krutkina ◽  
Aleksandr A Ashikhmin ◽  
Maria A Sinetova ◽  
...  

ABSTRACT Chloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new filamentous multicellular anoxygenic phototrophic Chloroflexales bacterium from an Arctic coastal environment (Kandalaksha Gulf, the White Sea). Phylogenomic analysis and 16S rRNA phylogeny indicated that this bacterium belongs to the Oscillochloridaceae family as a new species. We propose that this species be named ‘Candidatus Oscillochloris kuznetsovii’. The genomes of this species possessed genes encoding sulfide:quinone reductase, the nitrogenase complex and the Calvin cycle, which indicate potential for photoautotrophic metabolism. We observed only mesophilic anaerobic anoxygenic phototrophic growth of this novel bacterium. Electron microphotography showed the presence of chlorosomes, polyhydroxyalkanoate-like granules and polyphosphate-like granules in the cells. High-performance liquid chromatography also revealed the presence of bacteriochlorophylls a, c and d as well as carotenoids. In addition, we found that this bacterium is present in benthic microbial communities of various coastal environments of the Kandalaksha Gulf.


2011 ◽  
Vol 75 (17) ◽  
pp. 4830-4845 ◽  
Author(s):  
Magdalena R. Osburn ◽  
Alex L. Sessions ◽  
Charles Pepe-Ranney ◽  
John R. Spear

2020 ◽  
Author(s):  
Enrique Hurtado-Bautista ◽  
Laura F. Pérez-Sánchez ◽  
África Islas-Robles ◽  
Gustavo Santoyo ◽  
Gabriela Olmedo-Álvarez

AbstractDespite the crucial role of microorganisms to sustain life on Earth, there is little research on the evolution of thermal tolerance of bacteria in the face of the challenge that global warming poses. Phenotypic adaptation to a new environment requires plasticity to allow individuals to respond to selective forces, followed by adaptive evolution. We do not know to what extent phenotypic plasticity allows thermal tolerance evolution in bacteria at the border of their physiological limits. We analyzed growth and thermal reaction norms to temperature of strains of two bacterial lineages, Bacillus cereus sensu lato and Bacillus subtilis sensu lato, that evolved in two contrasting environments, a temperate lagoon (T) and a hot spring (H). Our results showed that despite co-occurrence of members of both lineages in the two contrasting environments, norms of reactions to temperature exhibited a similar pattern only within the lineages, suggesting fixed phenotypic plasticity. Additionally, within the B. cereus lineage, strains from the H environment showed only two to three °C more heat tolerance than strains from the T environment. The limited evolutionary changes towards an increase in heat tolerance in bacteria should alert us of the negative impact that climate change can have on all biological cycles in the planet.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9493
Author(s):  
Nastassia V. Patin ◽  
Emily Brown ◽  
Gabriella Chebli ◽  
Claire Garfield ◽  
Julia Kubanek ◽  
...  

Harmful Algal Blooms (HABs) exert considerable ecological and economic damage and are becoming increasingly frequent worldwide. However, the biological factors underlying HABs remain uncertain. Relationships between algae and bacteria may contribute to bloom formation, strength, and duration. We investigated the microbial communities and metabolomes associated with a HAB of the toxic dinoflagellate Karenia brevis off the west coast of Florida in June 2018. Microbial communities and intracellular metabolite pools differed based on both bacterial lifestyle and bloom level, suggesting a complex role for blooms in reshaping microbial processes. Network analysis identified K. brevis as an ecological hub in the planktonic ecosystem, with significant connections to diverse microbial taxa. These included four flavobacteria and one sequence variant unidentified past the domain level, suggesting uncharacterized diversity in phytoplankton-associated microbial communities. Additionally, intracellular metabolomic analyses associated high K. brevis levels with higher levels of aromatic compounds and lipids. These findings reveal water column microbial and chemical characteristics with potentially important implications for understanding HAB onset and duration.


2019 ◽  
Author(s):  
Shijie Bai ◽  
Xiaotong Peng

Abstract. The microbial diversity and functions of three high-temperature neutral hot springs water samples at different depths (0 m, 19 m and 58 m) were investigated based on 16S rRNA gene sequencing and a functional gene array (GeoChip 5.0). The results revealed that the bacterial communities were distinct at different depths in the hot springs. Additionally, in response to the depths, bacterial/archaeal community compositions exhibited shifts over the depth profiles. Aquificae, Alpha-proteobacteria, and Deinococcus-Thermus were the dominating phyla at 0 m, 19 m, and 58 m, respectively. Hydrogenobacter, Sphingobium, and Thermus were the most abundant genera at 0 m, 19 m, and 58 m, respectively. The phylum Thaumarchaeota was the most abundant member of the archaeal community in the samples at different hot spring depths. Functional results of the microbial communities indicated that microbial metabolic functions were mainly related to sulfur, nitrogen cycling, and hydrogen oxidation. In summary, our results demonstrated that distinct microbial communities and functions were found at different depths of hot springs in a very limited area. These findings will provide new insights into the deep-subsurface biosphere associated with terrestrial hot springs.


Author(s):  
Yelizaveta Rassadkina ◽  
Spencer Roth ◽  
Tamar Barkay

Yellowstone National Park is home to many different hot springs, lakes, geysers, pools, and basins that range in pH, chemical composition, and temperature. These different environmental variations provide a broad range of conditions that select and grow diverse communities of microorganisms. In this study, we collected samples from geochemically diverse lakes and springs to characterize the microbial communities present through 16S rRNA metagenomic analysis. This information was then used to observe how various microorganisms survive in high mercury environments. The results show the presence of microorganisms that have been studied in previous literature. The results also depict gradients of microorganisms including thermophilic bacteria and archaea that exist in these extreme environments. In addition, beta diversity analyses of the sequence data showed site clustering based primarily on temperature instead of pH or sample site, suggesting that while pH, temperature, and sample site were all shown to be significant, temperature is the strongest factor driving microorganism community development. While it is important to characterize the microorganism community present, it is also important to understand how this community functions as a result of its selection. Along with looking at community composition, genomic material was tested to see if it contained mercury methylating (hgcA) or mercury reducing (merA) genes. Out of 22 samples, three of them were observed to have merA genes, while no samples had hgcA genes. These results indicate that microorganisms in Mustard and Nymph Springs may use mercury reduction. Understanding how microorganisms survive in environments with high concentrations of toxic pollutants is crucial because it can be used as a model to better understand mechanisms of resistance and the biogeochemical cycle, as well as for bioremediation and other solutions to anthropogenic problems.


Sign in / Sign up

Export Citation Format

Share Document