scholarly journals Control over the fibrillization yield by varying the oligomeric nucleation propensities of self-assembling peptides

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Chun Yin Jerry Lau ◽  
Federico Fontana ◽  
Laurens D. B. Mandemaker ◽  
Dennie Wezendonk ◽  
Benjamin Vermeer ◽  
...  

AbstractSelf-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers. This strategy is exemplified with a set of surfactant-like peptides (SLPs) with different β-sheet propensities and charged residues flanking the aggregation domains. By integrating different techniques, we show that these molecular changes can alter both the nucleation propensity of the oligomeric intermediates and the thermodynamic stability of the fibril structures. We demonstrate that the amount of assembled nanofibers are critically defined by the oligomeric nucleation propensities. Our findings offer guidance on designing self-assembling peptides for different biomedical applications, as well as insights into the role of protein gatekeeper sequences in preventing amyloidosis.

2020 ◽  
Vol 27 (9) ◽  
pp. 923-929
Author(s):  
Gaurav Pandey ◽  
Prem Prakash Das ◽  
Vibin Ramakrishnan

Background: RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications. Objectives: In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly. Methods: We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide. Results: Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies. Conclusion: The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.


2019 ◽  
Vol 4 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Ryan T. Shafranek ◽  
Joel D. Leger ◽  
Song Zhang ◽  
Munira Khalil ◽  
Xiaodan Gu ◽  
...  

Directed self-assembly in polymeric hydrogels allows tunability of thermal response and viscoelastic properties.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 166 ◽  
Author(s):  
Lucia Lombardi ◽  
Annarita Falanga ◽  
Valentina Del Genio ◽  
Stefania Galdiero

Peptide drugs hold great promise for the treatment of infectious diseases thanks to their novel mechanisms of action, low toxicity, high specificity, and ease of synthesis and modification. Naturally developing self-assembly in nature has inspired remarkable interest in self-assembly of peptides to functional nanomaterials. As a matter of fact, their structural, mechanical, and functional advantages, plus their high bio-compatibility and bio-degradability make them excellent candidates for facilitating biomedical applications. This review focuses on the self-assembly of peptides for the fabrication of antibacterial nanomaterials holding great interest for substituting antibiotics, with emphasis on strategies to achieve nano-architectures of self-assembly. The antibacterial activities achieved by these nanomaterials are also described.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Julia Y. Rho ◽  
Henry Cox ◽  
Edward D. H. Mansfield ◽  
Sean H. Ellacott ◽  
Raoul Peltier ◽  
...  

Abstract Self-assembling peptides have the ability to spontaneously aggregate into large ordered structures. The reversibility of the peptide hydrogen bonded supramolecular assembly make them tunable to a host of different applications, although it leaves them highly dynamic and prone to disassembly at the low concentration needed for biological applications. Here we demonstrate that a secondary hydrophobic interaction, near the peptide core, can stabilise the highly dynamic peptide bonds, without losing the vital solubility of the systems in aqueous conditions. This hierarchical self-assembly process can be used to stabilise a range of different β-sheet hydrogen bonded architectures.


Langmuir ◽  
2009 ◽  
Vol 25 (5) ◽  
pp. 3289-3296 ◽  
Author(s):  
Elisabeth Protopapa ◽  
Steven Maude ◽  
Amalia Aggeli ◽  
Andrew Nelson

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2316 ◽  
Author(s):  
Qiuchen Zheng ◽  
Micheal T. Kebede ◽  
Merc M. Kemeh ◽  
Saadman Islam ◽  
Bethany Lee ◽  
...  

The amyloid-β (Aβ) peptide and tau protein are thought to play key neuropathogenic roles in Alzheimer’s disease (AD). Both Aβ and tau self-assemble to form the two major pathological hallmarks of AD: amyloid plaques and neurofibrillary tangles, respectively. In this review, we show that naturally occurring polyphenols abundant in fruits, vegetables, red wine, and tea possess the ability to target pathways associated with the formation of assemblies of Aβ and tau. Polyphenols modulate the enzymatic processing of the amyloid-β precursor protein and inhibit toxic Aβ oligomerization by enhancing the clearance of Aβ42 monomer, modulating monomer–monomer interactions and remodeling oligomers to non-toxic forms. Additionally, polyphenols modulate tau hyperphosphorylation and inhibit tau β-sheet formation. The anti-Aβ-self-assembly and anti-tau-self-assembly effects of polyphenols increase their potential as preventive or therapeutic agents against AD, a complex disease that involves many pathological mechanisms.


2004 ◽  
Vol 820 ◽  
Author(s):  
Xiaojun Zhao ◽  
Jessica Dai ◽  
Shuguang Zhang

AbstractWe designed and fabricated a class of self-assembling peptides into nanofiber scaffolds. KLDL-12 has been shown to be a permissible nanofiber scaffold for chondrocytes in cartilage 3-D cell cultures. However, the biochemical, structural, and biophysical properties of KLDL- 12 remain unclear. We show that KLDL-12 peptides form stable β-sheet structures at different pH values and that KLDL-12 and RIDI-12 self-assemble into nanofibers. The nanofiber length, though, is sensitive to pH changes. These results not only suggest the importance of electrostatic attraction or repulsion affecting the fiber lengths but also provide us with useful information for rational design and fabrication of peptide scaffolds.


2006 ◽  
Vol 09 (01n02) ◽  
pp. 1-29 ◽  
Author(s):  
RUDOLF M. FÜCHSLIN ◽  
THOMAS MAEKE ◽  
UWE TANGEN ◽  
JOHN S. McCASKILL

We propose that genetic encoding of self-assembling components greatly enhances the evolution of complex systems and provides an efficient platform for inductive generalization, i.e. the inductive derivation of a solution to a problem with a potentially infinite number of instances from a limited set of test examples. We exemplify this in simulations by evolving scalable circuitry for several problems. One of them, digital multiplication, has been intensively studied in recent years, where hitherto the evolutionary design of only specific small multipliers was achieved. The fact that this and other problems can be solved in full generality employing self-assembly sheds light on the evolutionary role of self-assembly in biology and is of relevance for the design of complex systems in nano- and bionanotechnology.


2017 ◽  
Vol 196 ◽  
pp. 305-316 ◽  
Author(s):  
Pengfei Duan ◽  
Deepak Asthana ◽  
Takuya Nakashima ◽  
Tsuyoshi Kawai ◽  
Nobuhiro Yanai ◽  
...  

Aggregation-induced photon upconversion (iPUC) based on a triplet–triplet annihilation (TTA) process is successfully developed via controlled self-assembly of donor–acceptor pairs in organogel nanoassemblies. Although segregation of donor from acceptor assemblies has been an outstanding problem in TTA-based UC and iPUC, we resolved this issue by modifying both the triplet donor and aggregation induced emission (AIE)-type acceptor with glutamate-based self-assembling moieties. These donors and acceptors co-assemble to form organogels without segregation. Interestingly, these donor–acceptor binary gels show upconversion at room temperature but the upconversion phenomena were lost upon dissolution of the gels on heating. The observed changes in TTA-UC emission were thermally reversible, reflecting the controlled assembly/disassembly of the binary molecular systems. The observed on/off ratio of UC emission was much higher than that of the aggregation-induced fluorescence of the acceptor, which highlights the important role of iPUC, i.e., multi-exciton TTA for photoluminescence switching. This work bridges iPUC and supramolecular chemistry and provides a new strategy for designing stimuli-responsive upconversion systems.


2019 ◽  
Vol 16 (2) ◽  
pp. 319-325
Author(s):  
Alessandra Scelsi ◽  
Brigida Bochicchio ◽  
Antonietta Pepe

Background: The conjugation of small organic molecules to self-assembling peptides is a versatile tool to decorate nanostructures with original functionalities. Labeling with chromophores or fluorophores, for example, creates optically active fibers with potential interest in photonic devices. Aim and Objective: In this work, we present a rapid and effective labeling procedure for a self-assembling peptide able to form nanofibers. Rapid periodate oxidation of the N-terminal serine residue of the peptide and subsequent conjugation with dansyl moiety generated fluorophore-decorated peptides. Results: Three dansyl-conjugated self-assembling peptides with variable spacer-length were synthesized and characterized and the role of the size of the linker between fluorophore and peptide in self-assembling was investigated. Our results show that a short linker can alter the self-assembly in nanofibers of the peptide. Conclusions: Herein we report on an alternative strategy for creating functionalized nanofibrils, able to expand the toolkit of chemoselective bioconjugation strategies to be used in site-specific decoration of self-assembling peptides.


Sign in / Sign up

Export Citation Format

Share Document