scholarly journals Graphene oxide and starch gel as a hybrid binder for environmentally friendly high-performance supercapacitors

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mario Rapisarda ◽  
Frank Marken ◽  
Michele Meo

AbstractAlternative green binders processable in water are being investigated for the development of more efficient and sustainable supercapacitors. However, their electrochemical performances have fallen within or below the average of commercially available devices. Herein, an optimised gelled mixture of graphene oxide (GO) and starch, a biopolymer belonging to the family of polysaccharides, is proposed. The molecular interactions between the two components enhance electrodes structure and morphology, as well as their thermal stability. GO, thanks to its reduction that is initially triggered by reactions with starch and further progressed by thermal treatment, actively contributes to the charge storage process of the supercapacitors. The optimised electrodes can deliver a specific capacitance up to 173.8 F g−1 while providing good rate capabilities and long-term stability over 17,000 cycles. These are among the best electrochemical performances achieved by environmentally friendly supercapacitors using a biomaterial as a binder.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


2021 ◽  
Vol 45 (7) ◽  
pp. 3581-3588
Author(s):  
Zhaokun Wang ◽  
Licong Jiang ◽  
Hongwei Pan ◽  
Yongyin Cui ◽  
Chengzhong Zong

A novel and environmentally-friendly resveratrol (RA) was used as an effective reagent for the preparation of reduced graphene oxide (rGO).


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 155
Author(s):  
Yan Su ◽  
Ting Liu ◽  
Caiqiao Song ◽  
Aiqiao Fan ◽  
Nan Zhu ◽  
...  

As an essential electrolyte for the human body, the potassium ion (K+) plays many physiological roles in living cells, so the rapid and accurate determination of serum K+ is of great significance. In this work, we developed a solid-contact ion-selective electrode (SC-ISE) using MoS2/Fe3O4 composites as the ion-to-electron transducer to determine serum K+. The potential response measurement of MoS2/Fe3O4/K+-ISE shows a Nernst response by a slope of 55.2 ± 0.1 mV/decade and a low detection limit of 6.3 × 10−6 M. The proposed electrode exhibits outstanding resistance to the interference of O2, CO2, light, and water layer formation. Remarkably, it also presents a high performance in potential reproducibility and long-term stability.


Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6521-6525 ◽  
Author(s):  
Ming Zhuo ◽  
Yuejiao Chen ◽  
Tao Fu ◽  
Haonan Zhang ◽  
Zhi Xu ◽  
...  

Ni(SO4)0.3(OH)1.4 nanobelts are utilized in a humidity sensor by a facile method. The nanobelt based sensor shows a high sensitivity, fast response and long-term stability in the sensing process.


RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35831-35839 ◽  
Author(s):  
Mustafa K. A. Mohammed

Carbon-based perovskite solar cells (C-PSCs) are the most promising photovoltaic (PV) due to their low material and manufacturing cost and superior long-term stability.


2020 ◽  
Author(s):  
Haozhen Dou ◽  
Mi Xu ◽  
Baoyu Wang ◽  
Zhen Zhang ◽  
Guobin Wen ◽  
...  

Abstract Cellular membranes provide ideal archetypes for molecule or ion separations with sub-angstrom scale precision, which are featured with both extremely high permeability and selectivity due to the well-defined membrane protein channels. However, the development of bioinspired membranes with artificial channels for sub-angstrom scale ethylene/ethane (0.416 nm / 0.443 nm) separation remains an uncharted territory and a significant challenge. Herein, a bioinspired nano-ordered liquid membrane is constructed by a facile ion/molecule self-assembly strategy for highly efficient ethylene/ethane separation, which mimics the structure of cellular membrane elegantly and possesses plenty of three-dimensional (3D) nanochannels. The elaborate regulation of non-covalent interactions by optimizing the ion/molecule compositions within membrane confers the nano-ordered liquid structure with interpenetrating and bi-continuous apolar domains and polar domains, which results in the formation of regular carrier wires and enormous 3D interconnected ethylene transport nanochannels. By virtue of these 3D nanochannels, the bioinspired nano-ordered liquid membrane manifests simultaneously super-high selectivity, excellent permeance and long-term stability, which exceeds previously reported ethylene/ethane separation membranes. This methodology in this work for construction of bioinspired membrane with tunable 3D nanochannels through ion/molecule self-assembly will enlighten the design and development of high-performance separation membranes for angstrom/sub-angstrom scale ion or molecule separations.


RSC Advances ◽  
2015 ◽  
Vol 5 (106) ◽  
pp. 87477-87483 ◽  
Author(s):  
Jie Xiong ◽  
Chengran Jiao ◽  
Minfang Han ◽  
Wentao Yi ◽  
Jie Ma ◽  
...  

A NiO-GDC‖GDC‖Ba0.9Co0.7Fe0.2Nb0.1O3−δ cell fed with UCG gas demonstrated exceptional electrochemical performance and desirable long term stability.


Carbon ◽  
2018 ◽  
Vol 139 ◽  
pp. 226-233 ◽  
Author(s):  
J.L. Gómez-Urbano ◽  
J.L. Gómez-Cámer ◽  
C. Botas ◽  
N. Díez ◽  
J.M. López del Amo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document