scholarly journals Benchmark and application of unsupervised classification approaches for univariate data

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maria El Abbassi ◽  
Jan Overbeck ◽  
Oliver Braun ◽  
Michel Calame ◽  
Herre S. J. van der Zant ◽  
...  

AbstractUnsupervised machine learning, and in particular data clustering, is a powerful approach for the analysis of datasets and identification of characteristic features occurring throughout a dataset. It is gaining popularity across scientific disciplines and is particularly useful for applications without a priori knowledge of the data structure. Here, we introduce an approach for unsupervised data classification of any dataset consisting of a series of univariate measurements. It is therefore ideally suited for a wide range of measurement types. We apply it to the field of nanoelectronics and spectroscopy to identify meaningful structures in data sets. We also provide guidelines for the estimation of the optimum number of clusters. In addition, we have performed an extensive benchmark of novel and existing machine learning approaches and observe significant performance differences. Careful selection of the feature space construction method and clustering algorithms for a specific measurement type can therefore greatly improve classification accuracies.

2021 ◽  
Vol 11 (12) ◽  
pp. 1645
Author(s):  
Sumit K. Vohra ◽  
Dimiter Prodanov

Image segmentation still represents an active area of research since no universal solution can be identified. Traditional image segmentation algorithms are problem-specific and limited in scope. On the other hand, machine learning offers an alternative paradigm where predefined features are combined into different classifiers, providing pixel-level classification and segmentation. However, machine learning only can not address the question as to which features are appropriate for a certain classification problem. The article presents an automated image segmentation and classification platform, called Active Segmentation, which is based on ImageJ. The platform integrates expert domain knowledge, providing partial ground truth, with geometrical feature extraction based on multi-scale signal processing combined with machine learning. The approach in image segmentation is exemplified on the ISBI 2012 image segmentation challenge data set. As a second application we demonstrate whole image classification functionality based on the same principles. The approach is exemplified using the HeLa and HEp-2 data sets. Obtained results indicate that feature space enrichment properly balanced with feature selection functionality can achieve performance comparable to deep learning approaches. In summary, differential geometry can substantially improve the outcome of machine learning since it can enrich the underlying feature space with new geometrical invariant objects.


2015 ◽  
Vol 1 (7) ◽  
pp. e1500163 ◽  
Author(s):  
Susanne Gerber ◽  
Illia Horenko

Cluster analysis is one of the most popular data analysis tools in a wide range of applied disciplines. We propose and justify a computationally efficient and straightforward-to-implement way of imposing the available information from networks/graphs (a priori available in many application areas) on a broad family of clustering methods. The introduced approach is illustrated on the problem of a noninvasive unsupervised brain signal classification. This task is faced with several challenging difficulties such as nonstationary noisy signals and a small sample size, combined with a high-dimensional feature space and huge noise-to-signal ratios. Applying this approach results in an exact unsupervised classification of very short signals, opening new possibilities for clustering methods in the area of a noninvasive brain-computer interface.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Marcos Fabietti ◽  
Mufti Mahmud ◽  
Ahmad Lotfi

AbstractAcquisition of neuronal signals involves a wide range of devices with specific electrical properties. Combined with other physiological sources within the body, the signals sensed by the devices are often distorted. Sometimes these distortions are visually identifiable, other times, they overlay with the signal characteristics making them very difficult to detect. To remove these distortions, the recordings are visually inspected and manually processed. However, this manual annotation process is time-consuming and automatic computational methods are needed to identify and remove these artefacts. Most of the existing artefact removal approaches rely on additional information from other recorded channels and fail when global artefacts are present or the affected channels constitute the majority of the recording system. Addressing this issue, this paper reports a novel channel-independent machine learning model to accurately identify and replace the artefactual segments present in the signals. Discarding these artifactual segments by the existing approaches causes discontinuities in the reproduced signals which may introduce errors in subsequent analyses. To avoid this, the proposed method predicts multiple values of the artefactual region using long–short term memory network to recreate the temporal and spectral properties of the recorded signal. The method has been tested on two open-access data sets and incorporated into the open-access SANTIA (SigMate Advanced: a Novel Tool for Identification of Artefacts in Neuronal Signals) toolbox for community use.


2021 ◽  
Vol 8 (10) ◽  
pp. 43-50
Author(s):  
Truong et al. ◽  

Clustering is a fundamental technique in data mining and machine learning. Recently, many researchers are interested in the problem of clustering categorical data and several new approaches have been proposed. One of the successful and pioneering clustering algorithms is the Minimum-Minimum Roughness algorithm (MMR) which is a top-down hierarchical clustering algorithm and can handle the uncertainty in clustering categorical data. However, MMR tends to choose the category with less value leaf node with more objects, leading to undesirable clustering results. To overcome such shortcomings, this paper proposes an improved version of the MMR algorithm for clustering categorical data, called IMMR (Improved Minimum-Minimum Roughness). Experimental results on actual data sets taken from UCI show that the IMMR algorithm outperforms MMR in clustering categorical data.


2021 ◽  
Author(s):  
Natacha Galmiche ◽  
Nello Blaser ◽  
Morten Brun ◽  
Helwig Hauser ◽  
Thomas Spengler ◽  
...  

<p>Probability distributions based on ensemble forecasts are commonly used to assess uncertainty in weather prediction. However, interpreting these distributions is not trivial, especially in the case of multimodality with distinct likely outcomes. The conventional summary employs mean and standard deviation across ensemble members, which works well for unimodal, Gaussian-like distributions. In the case of multimodality this misleads, discarding crucial information. </p><p>We aim at combining previously developed clustering algorithms in machine learning and topological data analysis to extract useful information such as the number of clusters in an ensemble. Given the chaotic behaviour of the atmosphere, machine learning techniques can provide relevant results even if no, or very little, a priori information about the data is available. In addition, topological methods that analyse the shape of the data can make results explainable.</p><p>Given an ensemble of univariate time series, a graph is generated whose edges and vertices represent clusters of members, including additional information for each cluster such as the members belonging to them, their uncertainty, and their relevance according to the graph. In the case of multimodality, this approach provides relevant and quantitative information beyond the commonly used mean and standard deviation approach that helps to further characterise the predictability.</p>


2021 ◽  
Author(s):  
Mikhail Kanevski

<p>Nowadays a wide range of methods and tools to study and forecast time series is available. An important problem in forecasting concerns embedding of time series, i.e. construction of a high dimensional space where forecasting problem is considered as a regression task. There are several basic linear and nonlinear approaches of constructing such space by defining an optimal delay vector using different theoretical concepts. Another way is to consider this space as an input feature space – IFS, and to apply machine learning feature selection (FS) algorithms to optimize IFS according to the problem under study (analysis, modelling or forecasting). Such approach is an empirical one: it is based on data and depends on the FS algorithms applied. In machine learning features are generally classified as relevant, redundant and irrelevant. It gives a reach possibility to perform advanced multivariate time series exploration and development of interpretable predictive models.</p><p>Therefore, in the present research different FS algorithms are used to analyze fundamental properties of time series from empirical point of view. Linear and nonlinear simulated time series are studied in detail to understand the advantages and drawbacks of the proposed approach. Real data case studies deal with air pollution and wind speed times series. Preliminary results are quite promising and more research is in progress.</p>


2022 ◽  
pp. 27-50
Author(s):  
Rajalaxmi Prabhu B. ◽  
Seema S.

A lot of user-generated data is available these days from huge platforms, blogs, websites, and other review sites. These data are usually unstructured. Analyzing sentiments from these data automatically is considered an important challenge. Several machine learning algorithms are implemented to check the opinions from large data sets. A lot of research has been undergone in understanding machine learning approaches to analyze sentiments. Machine learning mainly depends on the data required for model building, and hence, suitable feature exactions techniques also need to be carried. In this chapter, several deep learning approaches, its challenges, and future issues will be addressed. Deep learning techniques are considered important in predicting the sentiments of users. This chapter aims to analyze the deep-learning techniques for predicting sentiments and understanding the importance of several approaches for mining opinions and determining sentiment polarity.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Withnall ◽  
E. Lindelöf ◽  
O. Engkvist ◽  
H. Chen

AbstractNeural Message Passing for graphs is a promising and relatively recent approach for applying Machine Learning to networked data. As molecules can be described intrinsically as a molecular graph, it makes sense to apply these techniques to improve molecular property prediction in the field of cheminformatics. We introduce Attention and Edge Memory schemes to the existing message passing neural network framework, and benchmark our approaches against eight different physical–chemical and bioactivity datasets from the literature. We remove the need to introduce a priori knowledge of the task and chemical descriptor calculation by using only fundamental graph-derived properties. Our results consistently perform on-par with other state-of-the-art machine learning approaches, and set a new standard on sparse multi-task virtual screening targets. We also investigate model performance as a function of dataset preprocessing, and make some suggestions regarding hyperparameter selection.


2019 ◽  
Vol 26 (3) ◽  
pp. 1810-1826 ◽  
Author(s):  
Behnaz Raef ◽  
Masoud Maleki ◽  
Reza Ferdousi

The aim of this study is to develop a computational prediction model for implantation outcome after an embryo transfer cycle. In this study, information of 500 patients and 1360 transferred embryos, including cleavage and blastocyst stages and fresh or frozen embryos, from April 2016 to February 2018, were collected. The dataset containing 82 attributes and a target label (indicating positive and negative implantation outcomes) was constructed. Six dominant machine learning approaches were examined based on their performance to predict embryo transfer outcomes. Also, feature selection procedures were used to identify effective predictive factors and recruited to determine the optimum number of features based on classifiers performance. The results revealed that random forest was the best classifier (accuracy = 90.40% and area under the curve = 93.74%) with optimum features based on a 10-fold cross-validation test. According to the Support Vector Machine-Feature Selection algorithm, the ideal numbers of features are 78. Follicle stimulating hormone/human menopausal gonadotropin dosage for ovarian stimulation was the most important predictive factor across all examined embryo transfer features. The proposed machine learning-based prediction model could predict embryo transfer outcome and implantation of embryos with high accuracy, before the start of an embryo transfer cycle.


Sign in / Sign up

Export Citation Format

Share Document