scholarly journals Neutrino physics with an opaque detector

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
◽  
A. Cabrera ◽  
A. Abusleme ◽  
J. dos Anjos ◽  
T. J. C. Bezerra ◽  
...  

AbstractIn 1956 Reines & Cowan discovered the neutrino using a liquid scintillator detector. The neutrinos interacted with the scintillator, producing light that propagated across transparent volumes to surrounding photo-sensors. This approach has remained one of the most widespread and successful neutrino detection technologies used since. This article introduces a concept that breaks with the conventional paradigm of transparency by confining and collecting light near its creation point with an opaque scintillator and a dense array of optical fibres. This technique, called LiquidO, can provide high-resolution imaging to enable efficient identification of individual particles event-by-event. A natural affinity for adding dopants at high concentrations is provided by the use of an opaque medium. With these and other capabilities, the potential of our detector concept to unlock opportunities in neutrino physics is presented here, alongside the results of the first experimental validation.

2004 ◽  
Vol 19 (05) ◽  
pp. 337-348 ◽  
Author(s):  
L. OBERAUER

In the recent years important discoveries in the field of low energy neutrino physics (Eν in the ≈ MeV range) have been achieved. Results of the solar neutrino experiment SNO show clearly flavor transitions from νe to νμ,τ. In addition, the long standing solar neutrino problem is basically solved. With KamLAND, an experiment measuring neutrinos emitted from nuclear reactors at large distances, evidence for neutrino oscillations has been found. The values for the oscillation parameters, amplitude and phase, have been restricted. In this paper the potential of future projects in low energy neutrino physics is discussed. This encompasses future solar and reactor experiments as well as the direct search for neutrino masses. Finally the potential of a large liquid scintillator detector in an underground laboratory for supernova neutrino detection, solar neutrino detection, and the search for proton decay p→K+ν is discussed.


Author(s):  
J.M. Cowley

By extrapolation of past experience, it would seem that the future of ultra-high resolution electron microscopy rests with the advances of electron optical engineering that are improving the instrumental stability of high voltage microscopes to achieve the theoretical resolutions of 1Å or better at 1MeV or higher energies. While these high voltage instruments will undoubtedly produce valuable results on chosen specimens, their general applicability has been questioned on the basis of the excessive radiation damage effects which may significantly modify the detailed structures of crystal defects within even the most radiation resistant materials in a period of a few seconds. Other considerations such as those of cost and convenience of use add to the inducement to consider seriously the possibilities for alternative approaches to the achievement of comparable resolutions.


Author(s):  
Shinya Inoué

This paper reports progress of our effort to rapidly capture, and display in time-lapsed mode, the 3-dimensional dynamic architecture of active living cells and developing embryos at the highest resolution of the light microscope. Our approach entails: (A) real-time video tape recording of through-focal, ultrathin optical sections of live cells at the highest resolution of the light microscope; (B) repeat of A at time-lapsed intervals; (C) once each time-lapsed interval, an image at home focus is recorded onto Optical Disk Memory Recorder (OMDR); (D) periods of interest are selected using the OMDR and video tape records; (E) selected stacks of optical sections are converted into plane projections representing different view angles (±4 degrees for stereo view, additional angles when revolving stereos are desired); (F) analysis using A - D.


Author(s):  
Judith M. Brock ◽  
Max T. Otten ◽  
Marc. J.C. de Jong

A Field Emission Gun (FEG) on a TEM/STEM instrument provides a major improvement in performance relative to one equipped with a LaB6 emitter. The improvement is particularly notable for small-probe techniques: EDX and EELS microanalysis, convergent beam diffraction and scanning. The high brightness of the FEG (108 to 109 A/cm2srad), compared with that of LaB6 (∼106), makes it possible to achieve high probe currents (∼1 nA) in probes of about 1 nm, whilst the currents for similar probes with LaB6 are about 100 to 500x lower. Accordingly the small, high-intensity FEG probes make it possible, e.g., to analyse precipitates and monolayer amounts of segregation on grain boundaries in metals or ceramics (Fig. 1); obtain high-quality convergent beam patterns from heavily dislocated materials; reliably detect 1 nm immuno-gold labels in biological specimens; and perform EDX mapping at nm-scale resolution even in difficult specimens like biological tissue.The high brightness and small energy spread of the FEG also bring an advantage in high-resolution imaging by significantly improving both spatial and temporal coherence.


Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


Author(s):  
Xiao Zhang

Electron holography has recently been available to modern electron microscopy labs with the development of field emission electron microscopes. The unique advantage of recording both amplitude and phase of the object wave makes electron holography a effective tool to study electron optical phase objects. The visibility of the phase shifts of the object wave makes it possible to directly image the distributions of an electric or a magnetic field at high resolution. This work presents preliminary results of first high resolution imaging of ferroelectric domain walls by electron holography in BaTiO3 and quantitative measurements of electrostatic field distribution across domain walls.


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


Author(s):  
Bertholdand Senftinger ◽  
Helmut Liebl

During the last few years the investigation of clean and adsorbate-covered solid surfaces as well as thin-film growth and molecular dynamics have given rise to a constant demand for high-resolution imaging microscopy with reflected and diffracted low energy electrons as well as photo-electrons. A recent successful implementation of a UHV low-energy electron microscope by Bauer and Telieps encouraged us to construct such a low energy electron microscope (LEEM) for high-resolution imaging incorporating several novel design features, which is described more detailed elsewhere.The constraint of high field strength at the surface required to keep the aberrations caused by the accelerating field small and high UV photon intensity to get an improved signal-to-noise ratio for photoemission led to the design of a tetrode emission lens system capable of also focusing the UV light at the surface through an integrated Schwarzschild-type objective. Fig. 1 shows an axial section of the emission lens in the LEEM with sample (28) and part of the sample holder (29). The integrated mirror objective (50a, 50b) is used for visual in situ microscopic observation of the sample as well as for UV illumination. The electron optical components and the sample with accelerating field followed by an einzel lens form a tetrode system. In order to keep the field strength high, the sample is separated from the first element of the einzel lens by only 1.6 mm. With a numerical aperture of 0.5 for the Schwarzschild objective the orifice in the first element of the einzel lens has to be about 3.0 mm in diameter. Considering the much smaller distance to the sample one can expect intense distortions of the accelerating field in front of the sample. Because the achievable lateral resolution depends mainly on the quality of the first imaging step, careful investigation of the aberrations caused by the emission lens system had to be done in order to avoid sacrificing high lateral resolution for larger numerical aperture.


Author(s):  
R.D. Leapman

Extended X-ray Absorption Fine Structure (EXAFS) analysis makes use of synchrotron radiaion to measure modulations in the absorption coefficient above core edges and hence to obtain information about local atomic environments. EXAFS arises when ejected core electrons are backscattered by surrounding atoms and interfere with the outgoing waves. Recently, interest has also been shown in using inelastic electron scattering1-4. Some advantages of Extended X-ray-edge Energy Loss Fine Structure (EXELFS) are: a) small probes formed by the analytical electron microscope give spectra from μm to nm sized areas, compared with mm diameter areas for the X-ray technique, b) EXELFS can be combined with other techniques such as electron diffraction or high resolution imaging, and c) EXELFS is sensitive to low Z elements with K edges from ˜200 eV to ˜ 3000 eV (B to Cl).


Sign in / Sign up

Export Citation Format

Share Document