scholarly journals Author Correction: The impact of conflict-driven cropland abandonment on food insecurity in South Sudan revealed using satellite remote sensing

Nature Food ◽  
2022 ◽  
Author(s):  
Victor Mackenhauer Olsen ◽  
Rasmus Fensholt ◽  
Pontus Olofsson ◽  
Rogerio Bonifacio ◽  
Van Butsic ◽  
...  
Nature Food ◽  
2021 ◽  
Author(s):  
Victor Mackenhauer Olsen ◽  
Rasmus Fensholt ◽  
Pontus Olofsson ◽  
Rogerio Bonifacio ◽  
Van Butsic ◽  
...  

Author(s):  
Nathalie Pettorelli

This chapter explores how satellite remote sensing can be employed to monitor a wide range of anthropogenic pressures which affect species and ecosystems, in both terrestrial and marine systems. First, it reviews the literature on the use of satellite data to monitor deforestation and forest degradation. It then explores how these data can be used to monitor fragmentation, which is another form of habitat degradation that can represent an important threat to the preservation of biological diversity. This is followed by a review of the use of satellite remote sensing information to monitor urbanisation, night-time light pollution, oil exploration and exploitation, mineral extraction activities, oil spills and run-off, and illegal fishing. The chapter concludes by discussing opportunities for satellite remote sensing to monitor and predict the impact of climate change on biodiversity.


2020 ◽  
Author(s):  
Michael Fromm ◽  
George Kablick III

<p>The 2019/2020 fire season in Australia has been unusually energetic since early spring. In the last days of December and early January an unprecedented number of pyrocumulonimbus (pyroCb) storms erupted in New South Wales and Victoria, creating a seemingly unrivaled stratospheric smoke plume as well as devastation on the ground. Preliminary indications from satellite remote sensing are that the clustering of active pyroCbs and smoke injection heights exceeded all previous Australian pyroCb events, and perhaps pyroCb events worldwide. Similar to another extraordinary pyroCb event, the so-called Pacific Northwest Event in 2017, the Australian smoke plume has been observed to rise above its injection altitude by several kilometers. We report on the active blowups and quantify the impact on stratospheric composition using satellite remote sensing. Our analysis also consists of a quantitative comparison of the 2019/20 Australian pyrocb event with other major pyroCb events such as Black Saturday, Victoria, Australia in 2009. At the time of submission of this abstract, this is an unfolding episode; our report will characterize the unusual nature of this pyroCb event as the evolving plume and satellite remote sensing data permit.</p>


2015 ◽  
Vol 15 (10) ◽  
pp. 5471-5483 ◽  
Author(s):  
E. T. Sena ◽  
P. Artaxo

Abstract. A new methodology was developed for obtaining daily retrievals of the direct radiative forcing of aerosols (24h-DARF) at the top of the atmosphere (TOA) using satellite remote sensing. Simultaneous CERES (Clouds and Earth's Radiant Energy System) shortwave flux at the top of the atmosphere and MODIS (Moderate Resolution Spectroradiometer) aerosol optical depth (AOD) retrievals were used. To analyse the impact of forest smoke on the radiation balance, this methodology was applied over the Amazonia during the peak of the biomass burning season from 2000 to 2009. To assess the spatial distribution of the DARF, background smoke-free scenes were selected. The fluxes at the TOA under clean conditions (Fcl) were estimated as a function of the illumination geometry (θ0) for each 0.5° × 0.5° grid cell. The instantaneous DARF was obtained as the difference between the clean (Fcl (θ0)) and the polluted flux at the TOA measured by CERES in each cell (Fpol (θ0)). The radiative transfer code SBDART (Santa Barbara DISORT Radiative Transfer model) was used to expand instantaneous DARFs to 24 h averages. This new methodology was applied to assess the DARF both at high temporal resolution and over a large area in Amazonia. The spatial distribution shows that the mean 24h-DARF can be as high as −30 W m−2 over some regions. The temporal variability of the 24h-DARF along the biomass burning season was also studied and showed large intraseasonal and interannual variability. We showed that our methodology considerably reduces statistical sources of uncertainties in the estimate of the DARF, when compared to previous approaches. DARF assessments using the new methodology agree well with ground-based measurements and radiative transfer models. This demonstrates the robustness of the new proposed methodology for assessing the radiative forcing for biomass burning aerosols. To our knowledge, this is the first time that satellite remote sensing assessments of the DARF have been compared with ground-based DARF estimates.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1413
Author(s):  
Jiagen Li ◽  
Liang Sun ◽  
Yuanjian Yang ◽  
Hao Cheng

We introduce a novel method to accurately evaluate the satellite-observed sea surface temperature (SST) cooling induced by typhoons with complex tracks, which is widely used but only roughly calculated in previous studies. This method first records the typhoon forcing period and the SST response grid by grid, then evaluates the SST cooling in each grid by choosing the maximum decrease in SST within this time period. This grid-based flexible forcing date method can accurately evaluate typhoon-induced SST cooling and its corresponding date in each grid, as indicated by applying the method to the irregular track of Typhoon Lupit (2009) and three sequential typhoons in 2016 (Malakas, Megi, and Chaba). The method was used to accurately calculate the impact of Typhoon Megi by removing the influence of the other two typhoons. The SST cooling events induced by all typhoons in the northwest Pacific from 2004 to 2018 were extracted well using this method. Our findings provide new insights for accurately calculating the response of the ocean using multi-satellite remote sensing and simulation data, including the sea surface salinity, sea surface height, mixed layer depth, and the heat content of the upper levels of the ocean.


2011 ◽  
Vol 68 (4) ◽  
pp. 687-695 ◽  
Author(s):  
Sei-Ichi Saitoh ◽  
Robinson Mugo ◽  
I Nyoman Radiarta ◽  
Shinsuke Asaga ◽  
Fumihiro Takahashi ◽  
...  

Abstract Saitoh, S-I., Mugo, R., Radiarta, I N., Asaga, S., Takahashi, F., Hirawake, T., Ishikawa, Y., Awaji, T., In, T., and Shima, S. 2011. Some operational uses of satellite remote sensing and marine GIS for sustainable fisheries and aquaculture. – ICES Journal of Marine Science, 68: 687–695. An overview of satellite remote-sensing (SRS) operational applications in fisheries is presented, and includes two case studies illustrating the societal benefits of SRS. The first describes the use of satellite-based vessel monitoring systems (VMS) and SRS data in a skipjack tuna (Katsuwonus pelamis) fishery, including a simple algorithm for determining fishing activity from vessel speed. The second case study illustrates the application of remotely sensed information in determining the impact of climate change on site suitability for scallop (Mizuhopecten yessoensis) aquaculture. Global warming simulated according to Intergovernmental Panel on Climate Change scenarios had a significant impact on sites with the greatest suitability for scallop aquaculture. Some challenges in the field of fisheries information systems are also discussed.


1987 ◽  
Vol 16 ◽  
pp. 221-232
Author(s):  
Allen H. Watkins ◽  
June M. Thormodsgard

2018 ◽  
Vol 15 (3) ◽  
pp. 905-918 ◽  
Author(s):  
Caroline Echappé ◽  
Pierre Gernez ◽  
Vona Méléder ◽  
Bruno Jesus ◽  
Bruno Cognie ◽  
...  

Abstract. Satellite remote sensing (RS) is routinely used for the large-scale monitoring of microphytobenthos (MPB) biomass in intertidal mudflats and has greatly improved our knowledge of MPB spatio-temporal variability and its potential drivers. Processes operating on smaller scales however, such as the impact of benthic macrofauna on MPB development, to date remain underinvestigated. In this study, we analysed the influence of wild Crassostrea gigas oyster reefs on MPB biofilm development using multispectral RS. A 30-year time series (1985–2015) combining high-resolution (30 m) Landsat and SPOT data was built in order to explore the relationship between C. gigas reefs and MPB spatial distribution and seasonal dynamics, using the normalized difference vegetation index (NDVI). Emphasis was placed on the analysis of a before–after control-impact (BACI) experiment designed to assess the effect of oyster killing on the surrounding MPB biofilms. Our RS data reveal that the presence of oyster reefs positively affects MPB biofilm development. Analysis of the historical time series first showed the presence of persistent, highly concentrated MPB patches around oyster reefs. This observation was supported by the BACI experiment which showed that killing the oysters (while leaving the physical reef structure, i.e. oyster shells, intact) negatively affected both MPB biofilm biomass and spatial stability around the reef. As such, our results are consistent with the hypothesis of nutrient input as an explanation for the MPB growth-promoting effect of oysters, whereby organic and inorganic matter released through oyster excretion and biodeposition stimulates MPB biomass accumulation. MPB also showed marked seasonal variations in biomass and patch shape, size and degree of aggregation around the oyster reefs. Seasonal variations in biomass, with higher NDVI during spring and autumn, were consistent with those observed on broader scales in other European mudflats. Our study provides the first multi-sensor RS satellite evidence of the promoting and structuring effect of oyster reefs on MPB biofilms.


2020 ◽  
Vol 6 (3) ◽  
pp. 438-441
Author(s):  
Ibrahim Muntasir ◽  
Curci Gabriele ◽  
Habbani Farouk

Satellite remote detecting instruments have been to a great extent used to evaluate air pollutants on the ground and their impacts on human wellbeing. These instruments play an essential job by assessing emanations and air quality models yield. The study concentrated on the analysis of monthly data for the period January 2003 -December 2016 using remote sensing technology and via satellite data products for NASA's Earth navigation satellite. The tools used are Medium Resolution Imaging Spectrophotometer (MODIS), Multi-angle Imaging Spectrophotometer (MISR), the Ozone Monitoring Instrument (OMI), and the Retrospective Analysis of Modern Times for Research and Applications, Version 2 (MERRA-2). Sudan is influenced by airborne particles because of its diverse climate systems, which differ from the desert in the north to poor savanna in the center and to rich savanna in the south. The impact of air pollution is obvious during these years in Sudan. Likewise, OMI trace gas vertical column observations of nitrogen dioxide (NO2) watched higher convergences of tropospheric column NO2 in 2016 than in 2005 over Khartoum that recommends NOx emissions have increased in the city over this time period. The most elevated grouping of dust, a particulate matter (PM2.5), observed in March 2012 over Khartoum state. The highest concentration of sulfur dioxide (SO2) saw by MERRA-2 over Kuwait and South Sudan during December 2015. Noteworthy centralization concentration of black carbon observed over Iraq, Egypt, Central Africa, and South Sudan in December 2015. The most contamination from carbon monoxide watched by MERRA-2 over Iraq and north of Uganda during December 2014.


Sign in / Sign up

Export Citation Format

Share Document