scholarly journals Extended gate field-effect-transistor for sensing cortisol stress hormone

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Shokoofeh Sheibani ◽  
Luca Capua ◽  
Sadegh Kamaei ◽  
Sayedeh Shirin Afyouni Akbari ◽  
Junrui Zhang ◽  
...  

AbstractCortisol is a hormone released in response to stress and is a major glucocorticoid produced by adrenal glands. Here, we report a wearable sensory electronic chip using label-free detection, based on a platinum/graphene aptamer extended gate field effect transistor (EG-FET) for the recognition of cortisol in biological buffers within the Debye screening length. The device shows promising experimental features for real-time monitoring of the circadian rhythm of cortisol in human sweat. We report a hysteresis-free EG-FET with a voltage sensitivity of the order of 14 mV/decade and current sensitivity up to 80% over the four decades of cortisol concentration. The detection limit is 0.2 nM over a wide range, between 1 nM and 10 µM, of cortisol concentrations in physiological fluid, with negligible drift over time and high selectivity. The dynamic range fully covers those in human sweat. We propose a comprehensive analysis and a unified, predictive analytical mapping of current sensitivity in all regimes of operation.

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 680 ◽  
Author(s):  
Cao-An Vu ◽  
Wen-Yih Chen

Aptamers, in sensing technology, are famous for their role as receptors in versatile applications due to their high specificity and selectivity to a wide range of targets including proteins, small molecules, oligonucleotides, metal ions, viruses, and cells. The outburst of field-effect transistors provides a label-free detection and ultra-sensitive technique with significantly improved results in terms of detection of substances. However, their combination in this field is challenged by several factors. Recent advances in the discovery of aptamers and studies of Field-Effect Transistor (FET) aptasensors overcome these limitations and potentially expand the dominance of aptamers in the biosensor market.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1063 ◽  
Author(s):  
Salvatore Pullano ◽  
Nishat Tasneem ◽  
Ifana Mahbub ◽  
Samira Shamsir ◽  
Marta Greco ◽  
...  

Extended-gate field-effect transistor (EGFET) is an electronic interface originally developed as a substitute for an ion-sensitive field-effect transistor (ISFET). Although the literature shows that commercial off-the-shelf components are widely used for biosensor fabrication, studies on electronic interfaces are still scarce (e.g., noise processes, scaling). Therefore, the incorporation of a custom EGFET can lead to biosensors with optimized performance. In this paper, the design and characterization of a transistor association (TA)-based EGFET was investigated. Prototypes were manufactured using a 130 nm standard complementary metal-oxide semiconductor (CMOS) process and compared with devices presented in recent literature. A DC equivalence with the counterpart involving a single equivalent transistor was observed. Experimental results showed a power consumption of 24.99 mW at 1.2 V supply voltage with a minimum die area of 0.685 × 1.2 mm2. The higher aspect ratio devices required a proportionally increased die area and power consumption. Conversely, the input-referred noise showed an opposite trend with a minimum of 176.4 nVrms over the 0.1 to 10 Hz frequency band for a higher aspect ratio. EGFET as a pH sensor presented further validation of the design with an average voltage sensitivity of 50.3 mV/pH, a maximum current sensitivity of 15.71 mA1/2/pH, a linearity higher than 99.9%, and the possibility of operating at a lower noise level with a compact design and a low complexity.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3735 ◽  
Author(s):  
Kęstutis Ikamas ◽  
Ignas Nevinskas ◽  
Arūnas Krotkus ◽  
Alvydas Lisauskas

We demonstrate that the rectifying field effect transistor, biased to the subthreshold regime, in a large signal regime exhibits a super-linear response to the incident terahertz (THz) power. This phenomenon can be exploited in a variety of experiments which exploit a nonlinear response, such as nonlinear autocorrelation measurements, for direct assessment of intrinsic response time using a pump-probe configuration or for indirect calibration of the oscillating voltage amplitude, which is delivered to the device. For these purposes, we employ a broadband bow-tie antenna coupled Si CMOS field-effect-transistor-based THz detector (TeraFET) in a nonlinear autocorrelation experiment performed with picoseconds-scale pulsed THz radiation. We have found that, in a wide range of gate bias (above the threshold voltage V th = 445 mV), the detected signal follows linearly to the emitted THz power. For gate bias below the threshold voltage (at 350 mV and below), the detected signal increases in a super-linear manner. A combination of these response regimes allows for performing nonlinear autocorrelation measurements with a single device and avoiding cryogenic cooling.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Lan ◽  
Sidra Farid ◽  
Xenia Meshik ◽  
Ke Xu ◽  
Min Choi ◽  
...  

DNA aptamers have the ability to bind to target molecules with high selectivity and therefore have a wide range of clinical applications. Herein, a graphene substrate functionalized with a DNA aptamer is used to sense immunoglobulin E. The graphene serves as the conductive substrate in this field-effect-transistor-like (FET-like) structure. A voltage probe in an electrolyte is used to sense the presence of IgE as a result of the changes in the charge distribution that occur when an IgE molecule binds to the IgE DNA-based aptamer. Because IgE is an antibody associated with allergic reactions and immune deficiency-related diseases, its detection is of utmost importance for biomedical applications.


2D Materials ◽  
2021 ◽  
Author(s):  
Mohammad Mosarof Hossain ◽  
Babar Shabbir ◽  
Yingjie Wu ◽  
Wenzhi Yu ◽  
Vaishnavi Krishnamurthi ◽  
...  

2016 ◽  
Vol 163 ◽  
pp. 115-118
Author(s):  
Jiao Wen ◽  
Qiang Liu ◽  
Chang Liu ◽  
Yize Wang ◽  
Bo Zhang ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 184-195
Author(s):  
Chang-Ho Han ◽  
Jaesung Jang

A microfluidic carbon-nanotube-based field-effect transistor immunosensor equipped with electrohydrodynamic focusing for continuous and label-free detection of flowing Staphylococcus aureus particles.


Sign in / Sign up

Export Citation Format

Share Document