scholarly journals Skilful prediction of cod stocks in the North and Barents Sea a decade in advance

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Vimal Koul ◽  
Camilla Sguotti ◽  
Marius Årthun ◽  
Sebastian Brune ◽  
André Düsterhus ◽  
...  

AbstractReliable information about the future state of the ocean and fish stocks is necessary for informed decision-making by fisheries scientists, managers and the industry. However, decadal regional ocean climate and fish stock predictions have until now had low forecast skill. Here, we provide skilful forecasts of the biomass of cod stocks in the North and Barents Seas a decade in advance. We develop a unified dynamical-statistical prediction system wherein statistical models link future stock biomass to dynamical predictions of sea surface temperature, while also considering different fishing mortalities. Our retrospective forecasts provide estimates of past performance of our models and they suggest differences in the source of prediction skill between the two cod stocks. We forecast the continuation of unfavorable oceanic conditions for the North Sea cod in the coming decade, which would inhibit its recovery at present fishing levels, and a decrease in Northeast Arctic cod stock compared to the recent high levels.

2021 ◽  
Author(s):  
Vimal Koul ◽  
Camilla Sguotti ◽  
Marius Årthun ◽  
Sebastian Brune ◽  
André Düsterhus ◽  
...  

Abstract Reliable information about the future state of the ocean and fish stocks is necessary for informed decision-making by fisheries scientists, managers and the industry. However, multiyear regional ocean climate and fish stock predictions have until now had low forecast skill. Here, we provide skillful forecasts of the biomass of cod stocks in the North and Barents Seas a decade in advance. We develop a unified dynamical-statistical prediction system wherein statistical models link future total stock biomass to dynamical predictions of sea surface temperature, while also considering different fishing mortalities. We evaluate non-linear effects of temperature and fishing on cod biomass, and provide evidence of climate-derived predictability in cod stocks. We forecast the continuation of unfavorable oceanic conditions for the North Sea cod for the coming decade which would inhibit its recovery at present fishing levels, and a decrease in Northeast Arctic cod stock compared to the recent high levels.


2006 ◽  
Vol 63 (11) ◽  
pp. 2586-2602 ◽  
Author(s):  
Alexander Kempf ◽  
Jens Floeter ◽  
Axel Temming

The North Sea ecosystem of the early 1980s differed substantially from that of the early 1990s. The current North Sea multispecies fisheries assessment models are parameterized by fish diet data sets that reflect both ecosystem states, as the stomachs were sampled in 1981 and 1991. In this study, multispecies virtual population analysis (MSVPA) was parameterized with either diet data set, leading to different model food webs, each representing the predator's diet selection behavior and spatiotemporal overlap with their prey in the two respective ecosystem states. The impact of these changes in predator preferences and spatiotemporal overlap on recruitment success and on stock developments could be demonstrated by using either stomach data set to estimate historic and future spawning stock biomass and recruitment trajectories. The observed changes in the food web mainly impacted the hindcasted recruitment trajectories, whereas spawning stock biomass estimates were quite robust. In the prediction runs, the differences in the survival rate of the recruits decided whether fish stocks of commercially important species (e.g., Gadus morhua, Merlangius merlangus) would recover or collapse in the near future.


Author(s):  
Bjarte O. Kvamme ◽  
Adekunle P. Orimolade ◽  
Sverre K. Haver ◽  
Ove T. Gudmestad

A study of the wave conditions in the North Sea, the Norwegian Sea and the Barents Sea is presented in this paper. For each region, one reference location for which there are buoy measurements is selected. For the selected locations, WAM10 hindcast data are obtained from the Norwegian Meteorological Institute (MET Norway). The hindcast data for each location cover the period from 1957 to 2014. First, the hindcast datasets were validated against available buoy measurements — both for extreme value predictions and for application of hindcast data for planning of marine operations. The validation was carried out considering the winter season and the summer season separately. For each season, the datasets for two consecutive months were used. A comparison of the time-series of the hindcast datasets against the buoy measurements showed that the hindcast datasets compared relatively well with the buoy measurements. However, a comparison of the statistical parameters of the hindcast datasets against the buoy measurements showed that the hindcast datasets are slightly conservative in the estimate of the significant wave height for the Barents Sea and the Norwegian Sea. Overall, the data compared well, and the hindcast datasets are therefore considered in the following analysis. Hindcast data from these 57 years show that the wave conditions in the selected Norwegian Sea location is harsher than the wave conditions in both the North Sea and the Barents Sea locations. This is in agreement with the general expected spatial trend in the wave climate on the Norwegian Continental Shelf (NCS). It was also observed that the wave conditions in the selected Barents Sea location are harsher than the wave conditions in the North Sea. These findings are also reflected in the NORSOK N-003 standard on “Actions and Action effects” (NORSOK, 2015). The weather windows for weather-sensitive marine operations, that is, operations with operational reference period not exceeding 72 hours, were established from the hindcast dataset for each of the locations. It was observed that the Norwegian Sea has shorter weather windows, especially in the winter seasons, compared to both the Barents Sea and the North Sea. It was expected that the operational windows would be shorter in the winter seasons in the Barents Sea, due to the occurrence of polar lows. However, the polar lows are few and cause more concern related to forecasting of the weather conditions to start actual marine operations. Generally, the month with the highest probability of weather windows exceeding 72 hours was found to be July for all three locations.


2020 ◽  
Author(s):  
Meike Becker ◽  
Are Olsen ◽  
Peter Landschützer ◽  
Abdirhaman Omar ◽  
Gregor Rehder ◽  
...  

Abstract. We developed a simple method to refine existing open ocean maps towards different coastal seas. Using a multi linear regression we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (North Sea, Baltic Sea, Norwegian Coast and in the Barents Sea) covering a time period from 1998 to 2016. A comparison with gridded SOCAT v5 data revealed standard deviations of the residuals 0 ± 26 μatm in the North Sea, 0 ± 16 μatm along the Norwegian Coast, 0 ± 19 μatm in the Barents Sea, and 2 ± 42 μatm in the Baltic Sea.We used these maps as basis to investigate trends in fCO2, pH and air-sea CO2 flux. The surface ocean fCO2 trends are smaller than the atmospheric trend in most of the studied region. Only the western part of the North Sea is showing an increase in fCO2 close to 2 μatm yr−1, which is similar to the atmospheric trend. The Baltic Sea does not show a significant trend. Here, the variability was much larger than possibly observable trends. Consistently, the pH trends were smaller than expected for an increase of fCO2 in pace with the rise of atmospheric CO2 levels. The calculated air-sea CO2 fluxes revealed that most regions were net sinks for CO2. Only the southern North Sea and the Baltic Sea emitted CO2 to the atmosphere. Especially in the northern regions the sink strength increased during the studied period.


2021 ◽  
Vol 18 (3) ◽  
pp. 1127-1147
Author(s):  
Meike Becker ◽  
Are Olsen ◽  
Peter Landschützer ◽  
Abdirhaman Omar ◽  
Gregor Rehder ◽  
...  

Abstract. We developed a simple method to refine existing open-ocean maps and extend them towards different coastal seas. Using a multi-linear regression we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. A comparison with gridded Surface Ocean CO2 Atlas (SOCAT) v5 data revealed mean biases and standard deviations of 0 ± 26 µatm in the North Sea, 0 ± 16 µatm along the Norwegian Coast, 0 ± 19 µatm in the Barents Sea and 2 ± 42 µatm in the Baltic Sea. We used these maps to investigate trends in fCO2, pH and air–sea CO2 flux. The surface ocean fCO2 trends are smaller than the atmospheric trend in most of the studied regions. The only exception to this is the western part of the North Sea, where sea surface fCO2 increases by 2 µatm yr−1, which is similar to the atmospheric trend. The Baltic Sea does not show a significant trend. Here, the variability was much larger than the expected trends. Consistently, the pH trends were smaller than expected for an increase in fCO2 in pace with the rise of atmospheric CO2 levels. The calculated air–sea CO2 fluxes revealed that most regions were net sinks for CO2. Only the southern North Sea and the Baltic Sea emitted CO2 to the atmosphere. Especially in the northern regions the sink strength increased during the studied period.


2017 ◽  
Author(s):  
Johannes Hamre

The ecosystems with their relationships between fish species and stocks, have been established by evolution for millions of years, but during the last 50 years, the ecosystems in the North Sea and along the Norwegian coast have been changed fundamentally by fisheries. The North Sea mackerel stock has been depleted and its feeding grounds have been invaded by the Western mackerel which spawns west of Ireland. This stock is now very rich in numbers and occupies the North Sea, the Norwegian Sea and the western Barents Sea. If the trend continues, mackerel may outcompete many of the other fish stocks in the area. Traditionally and until the beginning of the 1970s, there was a large stock of sandeel spawning in the North Sea and on the Norwegian coast. Sandeel juveniles was an important food source for a wide range of species, including sea mammals and birds. The fact that this stock has also been overfished, may explain many changes observed in the ecosystem on the west coast of Norway, for example a large reduction in the populations of sea birds. There are several instances where ecosystems shift to sustain jellyfish blooms in response to depletion of forage fish stocks. This was registered in Namibia in the 1990’s, where the pilchard stock was decimated and the biomass of jellyfish soon became overwhelming. On the west-coast of Norway, there are now frequent blooms of jellyfish, yet another indication that a controlling factor is missing in the system, in this case sandeel, which is a key species in the transfer of nutrients from zooplankton to higher trophic levels in the area. In this paper, I give a description of the situation and some suggested measures that should be taken in fisheries management.


2020 ◽  
pp. 1-14
Author(s):  
Arild Saasen ◽  
Benny Poedjono ◽  
Geir Olav Ånesbug ◽  
Nicholas Zachman

Abstract Magnetic debris in a drilling fluid have a significant influence on the ability of the drilling fluid to maintain its function. Down hole logging can suffer from poor signal to noise ratios. Directional drilling in areas close to the magnetic North Pole, such as in the Barents Sea, Northern Canada or Russia can suffer because of magnetic contamination in the drilling fluid. Magnetic particles in the drilling fluid introduce additional errors to the magnetic surveying compared to those normally included in the ellipsoid of uncertainty calculation. On many offshore drilling rigs, there are mounted ditch magnets to remove metallic swarf from the drilling fluid. These magnets normally only remove the coarser swarf. In this project, we use a combination of strong magnets and flow directors to significantly improve the performance of the ditch magnets. This combination, together with proper routines for cleaning the ditch magnets, significantly helps to clean the drilling fluid. Through the combined use of flow directors and ditch magnets, it was possible to extract more than five times as much magnetic contamination from the drilling fluid as normal compared with other proper ditch magnet systems. This is verified by comparing the ditch magnet efficiencies from two drilling rigs drilling ERD wells in the North Sea area. In the paper, it is discussed how the accuracy of directional drilling and well position effected by various interferences can be improved by the use of a drilling fluid with minimal effect to the MWD measurement.


Author(s):  
Christopher P. Lynam ◽  
Stephen J. Hay ◽  
Andrew S. Brierley

Jellyfish medusae prey on zooplankton and may impact fish recruitment both directly (top-down control) and indirectly (through competition). Abundances of Aurelia aurita, Cyanea lamarckii and Cyanea capillata medusae (Scyphozoa) in the North Sea appear to be linked to large-scale inter-annual climatic change, as quantified by the North Atlantic Oscillation Index (NAOI), the Barents Sea-Ice Index (BSII) and changes in the latitude of the Gulf Stream North Wall (GSNW). Hydroclimatic forcing may thus be an important factor influencing the abundance of gelatinous zooplankton and may modulate the scale of any ecosystem impact of jellyfish. The population responses are probably also affected by local variability in the environment manifested in intra-annual changes in temperature, salinity, current strength/direction and prey abundance. Aurelia aurita and C. lamarckii in the north-west and south-east North Sea exhibited contrasting relationships to change in the NAOI and BSII: north of Scotland, where the North Sea borders the Atlantic, positive relationships were evident between the abundance of scyphomedusae (data from 1974 to 1986, except 1975) and the indices; whereas west of northern Denmark, a region much less affected by Atlantic inflow, negative relationships were found (data from 1973 to 1983, except 1974). Weaker negative relationships with the NAOI were also found in an intermediate region, east of Scotland, for the abundance of A. aurita and C. capillata medusae (1971 to 1982). East of Shetland, the abundance of jellyfish was not correlated directly with the NAOI but, in contrast to all other regions, the abundances of A. aurita and C. lamarckii (1971 to 1986, not 1984) were found to correlate negatively with changes in the GSNW, which itself was significantly positively correlated to the NAOI with a two year lag. On this evidence, we suggest that, for jellyfish, there exist three regions of the North Sea with distinct environmental processes governing species abundance: one north of Scotland, another east of Shetland, and a more southerly group (i.e. east of Scotland and west of northern Denmark). Impacts by jellyfish are likely to vary regionally, and ecosystem management may benefit from considering this spatial variability.


2002 ◽  
Vol 59 (1) ◽  
pp. 136-143 ◽  
Author(s):  
Anders Nielsen ◽  
Peter Lewy

A simulation study was carried out for a separable fish stock assessment model including commercial and survey catch-at-age and effort data. All catches are considered stochastic variables subject to sampling and process variations. The results showed that the Bayes estimator of spawning biomass is a useful but slightly biased estimator for which the frequentist variance can be estimated by the posterior variance. Comparisons further show that the Bayes estimator is better than the maximum likelihood in the sense that it is less biased and, surprisingly, has a much lesser variance. The catch simulations were based on the North Sea plaice (Pleuronectes platessa) stock and fishery data.


2014 ◽  
Vol 71 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Steven Mackinson

When an ecosystem model of the North Sea is calibrated to data from multiple trophic levels, the model estimated the primary production required to support the food web correlates temporally with observed changes in sea temperature and nutrient levels, supporting evidence from empirical analyses. However, a different result is given from an alternative calibration using fish stock data only. The inference taken from the emergent primary production – temperature relationship and empirical data are that, on balance, there is stronger overall evidence to support the calibration constrained at multiple trophic levels. Two important implications of the findings are (i) that the relative importance of fishing and environmental effects is likely to be interpreted differently depending on the calibration approach and (ii) the contrasting model calibrations would give different responses to fishing policies. It raises questions regarding how to judge the performance (and credibility) of an ecosystem model and the critical importance of conducting empirical and modelling analyses in parallel. Adopting a combined approach to ecosystem modelling is an important step in the pursuit of operational and defensible tools to support the ecosystem approach to management.


Sign in / Sign up

Export Citation Format

Share Document