The Static Head Turn Indicator for Aeroplanes

1919 ◽  
Vol 88 (2288supp) ◽  
pp. 322-323
Author(s):  
Horace Darwin
Keyword(s):  
1919 ◽  
Vol 23 (108) ◽  
pp. 617-625
Author(s):  
Horace Darwin

An instrument to indicate whether, under all conditions, the path of the aeroplane is a straight line or whether it is turning to the right or left, is much required. It is well known that when flying in a cloud or at night, and no fixed object is visible, even the most experienced pilot may, without realising it, be flying on a sharp curve. If, however, the angle of banking is great the muscular reaction of his body will have to be increased to counteract the increased force acting on it. This will tell him that his course is not straight, but there is nothing to show whether he is on a right-hand or left-hand turn. If he tries to straighten his course he is just as likely to increase the curvature as to straighten out.


Author(s):  
Adam Robinson ◽  
Carol Eastwick ◽  
Herve´ Morvan

Within an aero-engine bearing chamber oil is provided to components to lubricate and cool. This oil must be efficiently removed (scavenged) from the chamber to ensure it does not overheat and degrade. Bearing chambers typically contain a sump section with an exit pipe leading to a scavenge pump. In this paper a simplified geometry of a sump section, here simply made of a radial off-take port on a walled inclined plane, is analysed computationally. This paper follows on work presented within GT2008-50634. In the previous paper it was shown that simple gravity draining from a static head of liquid cold be modelled accurately, for what was akin to a deep sump situation fond in integrated gear boxes for example. The work within this paper will show that the draining of flow perpendicular to a moving film can be modelled. This situation is similar to the arrangements found in transmission bearing chambers. The case modelled is of a walled gravity driven film running down a plane with a circular off-take port, this replicates experimental work similar to that reported in GT2008-50632. The commercial computational fluid dynamics (CFD) code, Fluent 6 [1] has been employed for modelling, sing the Volume of Fluid (VOF) approach of Hirt and Nichols [2, 3] to capture the physics of both the film motion and the two phase flow in the scavenge pipe system. Surface tension [4] and a sharpening algorithm [5] are used to complement the representation of the free surface and associated effects. This initial CFD investigation is supported and validated with experimental work, which is only depicted briefly here as it is mainly sued to support the CFD methodology. The case has been modelled in full as well as with the use of a symmetry plane running down the centre of the plane parallel to the channel walls. This paper includes details of the meshing methodology, the boundary conditions sued, which will be shown to be of critical importance to accurate modelling, and the modelling assumptions. Finally, insight into the flow patterns observed for the cases modelled are summarised. The paper further reinforces that CFD is a promising approach to analysing bearing chamber scavenge flows although it can still be relatively costly.


2011 ◽  
Vol 29 (6) ◽  
pp. 1197-1208 ◽  
Author(s):  
G. Wannberg ◽  
A. Westman ◽  
A. Pellinen-Wannberg

Abstract. The polarization characteristics of 930-MHz meteor head echoes have been studied for the first time, using data obtained in a series of radar measurements carried out with the tristatic EISCAT UHF high power, large aperture (HPLA) radar system in October 2009. An analysis of 44 tri-static head echo events shows that the polarization of the echo signal recorded by the Kiruna receiver often fluctuates strongly on time scales of tens of microseconds, illustrating that the scattering process is essentially stochastic. On longer timescales (> milliseconds), more than 90 % of the recorded events show an average polarization signature that is independent of meteor direction of arrival and echo strength and equal to that of an incoherent-scatter return from underdense plasma filling the tristatic observation volume. This shows that the head echo plasma targets scatter isotropically, which in turn implies that they are much smaller than the 33-cm wavelength and close to spherically symmetric, in very good agreement with results from a previous EISCAT UHF study of the head echo RCS/meteor angle-of-incidence relationship. Significant polarization is present in only three events with unique target trajectories. These all show a larger effective target cross section transverse to the trajectory than parallel to it. We propose that the observed polarization may be a signature of a transverse charge separation plasma resonance in the region immediately behind the meteor head, similar to the resonance effects previously discussed in connection with meteor trail echoes by Herlofson, Billam and Browne, Jones and Jones and others.


Author(s):  
K. Vijayraj ◽  
M. Govardhan

A Counter-Rotating System (CRS) is composed of a front rotor and a rear rotor which rotates in the opposite direction. Compared with traditional rotor-stator system, the rear rotor is used not only to recover the static head but also to supply energy to the fluid. Therefore, to achieve the same performance, the use of a CRS may lead to a reduction of the rotational speed and may generate better homogeneous flow downstream of the stage. On the other hand, the mixing area in between the two rotors induces complicated interacting flow structures. Blade sweep has attracted the turbomachinery blade designers owing to a variety of performance benefits it offers. However, the effect of blade sweep on the performance, stall margin improvements whether it is advantageous/disadvantageous to sweep one or both rotors has not been studied till now. In the current investigation blade sweep on the performance characteristics of contra rotating axial flow fans are studied. Two sweep schemes (axial sweeping and tip chord line sweeping) are studied for two sweep angles (20° and 30°). Effect of blade sweep on front rotor and rear rotor are dealt separately by sweeping one at a time. Both rotors are swept together and effect of such sweep scheme on the aerodynamic performance of the stage is also reported here. The performance of contra rotating fan is significantly affected by all these parameters. Blade sweep improved the pressure rise and stall margin of front rotors. Axially swept rotors are found to have higher pressure rise with reduced incidence losses near the tip for front rotors. Sweeping the rear rotor is not effective since the pressure rise is less than that of unswept rotor and also has less stall margin.


1987 ◽  
Vol 62 (3) ◽  
pp. 919-925 ◽  
Author(s):  
A. De Troyer ◽  
V. Ninane ◽  
J. J. Gilmartin ◽  
C. Lemerre ◽  
M. Estenne

The electrical activity of the triangularis sterni (transversus thoracis) muscle was studied in supine humans during resting breathing and a variety of respiratory and nonrespiratory maneuvers known to bring the abdominal muscles into action. Twelve normal subjects, of whom seven were uninformed and untrained, were investigated. The electromyogram of the triangularis sterni was recorded using a concentric needle electrode, and it was compared with the electromyograms of the abdominal (external oblique and rectus abdominis) muscles. The triangularis sterni was usually silent during resting breathing. In contrast, the muscle was invariably activated during expiration from functional residual capacity, expulsive maneuvers, “belly-in” isovolume maneuvers, static head flexion and trunk rotation, and spontaneous events such as speech, coughing, and laughter. When three trained subjects expired voluntarily with considerable recruitment of the triangularis sterni and no abdominal muscle activity, rib cage volume decreased and abdominal volume increased. These results indicate that unlike in the dog, spontaneous quiet expiration in supine humans is essentially a passive process; the human triangularis sterni, however, is a primary muscle of expiration; and its neural activation is largely coupled with that of the abdominals. The triangularis sterni probably contributes to the deflation of the rib cage during active expiration.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251117
Author(s):  
Andrea Polzien ◽  
Iris Güldenpenning ◽  
Matthias Weigelt

In many kinds of sports, deceptive actions are frequently used to hamper the anticipation of an opponent. The head fake in basketball is often applied to deceive an observer regarding the direction of a pass. To perform a head fake, a basketball player turns the head in one direction, but passes the ball to the opposite direction. Several studies showed that reactions to passes with head fakes are slower and more error-prone than to passes without head fakes (head-fake effect). The aim of a basketball player is to produce a head-fake effect for as large as possible in the opponent. The question if the timing of the deceptive action influences the size of the head-fake effect has not yet been examined systematically. The present study investigated if the head-fake effect depends on the temporal lag between the head turn and the passing movement. To this end, the stimulus onset asynchrony between head turn, and pass was varied between 0 and 800 ms. The results showed the largest effect when the head turn precedes the pass by 300 ms. This result can be explained better by facilitating the processing of passes without head fake than by making it more difficult to process passes with a head fake. This result is discussed regarding practical implications and conclusions about the underlying mechanism of the head–fake effect in basketball are drawn.


1983 ◽  
Vol 26 (2) ◽  
pp. 268-282 ◽  
Author(s):  
James Hillenbrand

An operant head-turn procedure was used to test whether 6-month-old infants recognize the auditor similarity of speech sounds sharing a value on a phonetic-feature dimension. One group of infants was reinforced for head turns when a change occurred from a series of repeating background stimuli containing nasal consonants ([m, n, ŋ]) to repetitions from a category of syllables containing voiced stop consonants ([b, d, g]), or to a change from stops to nasals. The stimuli were naturally produced by both male and female talkers. The performance of infants in this "phonetic" group was compared to that of infants in a "nonphonetic" control group. Using the same procedures, these infants were reinforced for head turns to a group of phonetically unrelated speech sounds. Results indicated that the performance of infants in the group trained on phonetically related speech sounds was far superior to that of infants in the nonphonetic control group. These findings suggest that prelinguistic infants can perceptually organize speech sounds on the basis of auditory properties related to feature similarity.


Sign in / Sign up

Export Citation Format

Share Document