Role of cardiolipin in cytochrome c release from mitochondria

2007 ◽  
Vol 14 (7) ◽  
pp. 1243-1247 ◽  
Author(s):  
M Ott ◽  
B Zhivotovsky ◽  
S Orrenius
Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 182 ◽  
Author(s):  
Massimo Malerba ◽  
Raffaella Cerana

Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO−) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO− scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO− in the FC-induced responses. In particular, ONOO− seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria.


Oncogene ◽  
1998 ◽  
Vol 17 (26) ◽  
pp. 3401-3415 ◽  
Author(s):  
Pothana Saikumar ◽  
Zheng Dong ◽  
Yogi Patel ◽  
Kristi Hall ◽  
Ulrich Hopfer ◽  
...  

2002 ◽  
Vol 156 (6) ◽  
pp. 1089-1098 ◽  
Author(s):  
Loretta Dorstyn ◽  
Stuart Read ◽  
Dimitrios Cakouros ◽  
Jun R. Huh ◽  
Bruce A. Hay ◽  
...  

The release of cytochrome c from mitochondria is necessary for the formation of the Apaf-1 apoptosome and subsequent activation of caspase-9 in mammalian cells. However, the role of cytochrome c in caspase activation in Drosophila cells is not well understood. We demonstrate here that cytochrome c remains associated with mitochondria during apoptosis of Drosophila cells and that the initiator caspase DRONC and effector caspase DRICE are activated after various death stimuli without any significant release of cytochrome c in the cytosol. Ectopic expression of the proapoptotic Bcl-2 protein, DEBCL, also fails to show any cytochrome c release from mitochondria. A significant proportion of cellular DRONC and DRICE appears to localize near mitochondria, suggesting that an apoptosome may form in the vicinity of mitochondria in the absence of cytochrome c release. In vitro, DRONC was recruited to a >700-kD complex, similar to the mammalian apoptosome in cell extracts supplemented with cytochrome c and dATP. These results suggest that caspase activation in insects follows a more primitive mechanism that may be the precursor to the caspase activation pathways in mammals.


2021 ◽  
Vol 22 (24) ◽  
pp. 13368
Author(s):  
Agnieszka Kobylińska ◽  
Małgorzata Maria Posmyk

Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin effectively eliminates oxidative stress (direct and indirect antioxidant) and switches on different defence strategies (preventive and interventive actions) during environmental stresses. In the presented report, exogenous melatonin potential to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) exposed to lead against death was examined. Analyses of cell proliferation and viability, the level of intracellular calcium, changes in mitochondrial membrane potential (ΔΨm) as well as possible translocation of cytochrome c from mitochondria to cytosol and subsequent caspase-like proteolytic activity were conducted. Our results indicate that pretreatment BY-2 with melatonin protected tobacco cells against mitochondrial dysfunction and caspase-like activation caused by lead. The findings suggest the possible role of this indoleamine in the molecular mechanism of mitochondria, safeguarding against potential collapse and cytochrome c release. Thus, it seems that applied melatonin acted as an effective factor, promoting survival and increasing plant tolerance to lead.


2018 ◽  
Author(s):  
Alexandre Légiot ◽  
Claire Céré ◽  
Thibaud Dupoiron ◽  
Mohamed Kaabouni ◽  
Stéphen Manon

AbstractThe distribution of the pro-apoptotic protein Bax in the outer mitochondrial membrane (OMM) is a central point of regulation of apoptosis. It is now widely recognized that parts of the endoplasmic reticulum (ER) are closely associated to the OMM, and are actively involved in different signalling processes. We adressed a possible role of these domains, called Mitochondria-Associated Membranes (MAMs) in Bax localization and fonction, by expressing the human protein in a yeast mutant deleted of MDM34, a ERMES component (ER-Mitochondria Encounter Structure). By affecting MAMs stability, the deletion of MDM34 altered Bax mitochondrial localization, and decreased its capacity to release cytochrome c. Furthermore, the deletion of MDM34 decreased the size of an uncompletely released, MAMs-associated pool of cytochrome c.


1999 ◽  
Vol 66 ◽  
pp. 27-31 ◽  
Author(s):  
Christoph Richter ◽  
Pedram Ghafourifar

This chapter addresses the role of mitochondria in apoptosis. Emphasis is put on the recently observed influence of ceramides on mitochondrial functions. We report here that N-acetylsphingosine (C2-ceramide), N-hexanoylsphingosine (C6-ceramide) and, to a much lesser extent, C2-dihydroceramide, induce cytochrome c (cyt c) release from isolated rat liver mitochondria. Ceramide-induced cyt c release is prevented by a low concentration of Bcl-2. The release takes place when cyt c is oxidized, but not when it is reduced. Upon cyt c release mitochondrial oxygen consumption, mitochondrial transmembrane potential (ΔΨm) and Ca2+ retention are diminished. Bcl-2 prevents, and addition of cyt c reverses, the alteration of these mitochondrial functions. In ATP-energized mitochondria ceramides do not alter ΔΨm, neither when cyt c is oxidized nor when it is reduced. This rules out a non-specific disturbance by ceramides of mitochondrial-membrane integrity. It is concluded that some of the apoptogenic properties of ceramides are mediated via their interaction with mitochondrial cyt c followed by its release.


Sign in / Sign up

Export Citation Format

Share Document