scholarly journals A change of paradigm: obesity is not due to either ‘excess’ energy intake or ‘inadequate’ energy expenditure

1998 ◽  
Vol 22 (11) ◽  
pp. 1137-1137 ◽  
Author(s):  
LV Campbell
Author(s):  
I. Sadaf Farooqi

Body weight is determined by an interaction between genetic, environmental, and psychosocial factors acting through the physiological mediators of energy intake and expenditure (1). By definition, obesity results from an imbalance between energy intake and energy expenditure and in any individual, excessive caloric intake or low energy expenditure, or both, may explain the development of obesity. A third factor, nutrient partitioning, a term reflecting the propensity to store excess energy as fat rather than lean tissue, may contribute.


2020 ◽  
pp. 1-6
Author(s):  
Tatyana Dzimbova

Introduction. Proper nutrition is crucial for child and adolescent athletes to maintain growth and development and to achieveoptimal results in sports. It is very important to balance the energy expenditure with the energy intake in order to prevent the energy deficit or excess.Materials and methods. Subjects involved in two different sports participated in the study: 13 gymnasts (age 13.8 ± 4.1 years, height 153.4 ± 11.3 cm, weight 47.1 ± 10.5 kg) and 15 basketball players (age 15.5 ± 1.1 years, height 176.7 ± 7.9 cm, weight 65.2 ± 10.7 kg). Determination of total energy expenditure was made by prediction equations. The subjects maintained a food records for 5 consecutive days, which were processed in the ASA24 system of the NCI. Results and discussion. Energy intake in both groups is sufficient to meet the daily needs, development of young athletes andprovide the energy needed in training. The intake of three minerals (calcium, magnesium and potassium) and three vitamins (D, E and A) was lower than recommended values in both groups.Conclusion. As a result of the busy schedule of adolescent athletes, their main meals are out of home, and the proportion of highly processed foods containing small amounts of important vitamins and minerals is high. The main recommendations include dairy products, fruits, vegetables and whole grains. The idea behind the changes is to give young athletes the right diet and the right eating habits.


2014 ◽  
Vol 306 (11) ◽  
pp. E1248-E1256 ◽  
Author(s):  
Julie Berg Schmidt ◽  
Nikolaj Ture Gregersen ◽  
Sue D. Pedersen ◽  
Johanne L. Arentoft ◽  
Christian Ritz ◽  
...  

Our aim was to examine the effects of GLP-1 and PYY3–36, separately and in combination, on energy intake, energy expenditure, appetite sensations, glucose and fat metabolism, ghrelin, and vital signs in healthy overweight men. Twenty-five healthy male subjects participated in this randomized, double-blinded, placebo-controlled, four-arm crossover study (BMI 29 ± 3 kg/m2, age 33 ± 9 yr). On separate days they received a 150-min intravenous infusion of 1) 0.8 pmol·kg−1·min−1 PYY3–36, 2) 1.0 pmol·kg−1·min−1 GLP-1, 3) GLP-1 + PYY3–36, or 4) placebo. Ad libitum energy intake was assessed during the final 30 min. Measurements of appetite sensations, energy expenditure and fat oxidation, vital signs, and blood variables were collected throughout the infusion period. No effect on energy intake was found after monoinfusions of PYY3–36 (−4.2 ± 4.8%, P = 0.8) or GLP-1 (−3.0 ± 4.5%, P = 0.9). However, the coinfusion reduced energy intake compared with placebo (−30.4 ± 6.5%, P < 0.0001) and more than the sum of the monoinfusions ( P < 0.001), demonstrating a synergistic effect. Coinfusion slightly increased sensation of nausea ( P < 0.05), but this effect could not explain the effect on energy intake. A decrease in plasma ghrelin was found after all treatments compared with placebo (all P < 0.05); however, infusions of GLP-1 + PYY3–36 resulted in an additional decrease compared with the monoinfusions (both P < 0.01). We conclude that coinfusion of GLP-1 and PYY3–36 exerted a synergistic effect on energy intake. The satiating effect of the meal was enhanced by GLP-1 and PYY3–36 in combination compared with placebo. Coinfusion was accompanied by slightly increased nausea and a decrease in plasma ghrelin, but neither of these factors could explain the reduction in energy intake.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


Metabolism ◽  
2008 ◽  
Vol 57 (10) ◽  
pp. 1458-1464 ◽  
Author(s):  
Éric Doucet ◽  
Manon Laviolette ◽  
Pascal Imbeault ◽  
Irene Strychar ◽  
Rémi Rabasa-Lhoret ◽  
...  

2015 ◽  
Vol 75 (3) ◽  
pp. 319-327 ◽  
Author(s):  
David J. Clayton ◽  
Lewis J. James

The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.


Sign in / Sign up

Export Citation Format

Share Document