scholarly journals The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro

Oncogene ◽  
1999 ◽  
Vol 18 (17) ◽  
pp. 2690-2702 ◽  
Author(s):  
Andrew R Cuddihy ◽  
Andrew Hoi-Tao Wong ◽  
Nancy Wai Ning Tam ◽  
Suiyang Li ◽  
Antonis E Koromilas
1999 ◽  
Vol 19 (4) ◽  
pp. 2475-2484 ◽  
Author(s):  
Andrew R. Cuddihy ◽  
Suiyang Li ◽  
Nancy Wai Ning Tam ◽  
Andrew Hoi-Tao Wong ◽  
Yoichi Taya ◽  
...  

ABSTRACT The tumor suppressor p53 plays a key role in inducing G1 arrest and apoptosis following DNA damage. The double-stranded-RNA-activated protein PKR is a serine/threonine interferon (IFN)-inducible kinase which plays an important role in regulation of gene expression at both transcriptional and translational levels. Since a cross talk between IFN-inducible proteins and p53 had already been established, we investigated whether and how p53 function was modulated by PKR. We analyzed p53 function in several cell lines derived from PKR+/+ and PKR−/− mouse embryonic fibroblasts (MEFs) after transfection with the temperature-sensitive (ts) mutant of mouse p53 [p53(Val135)]. Here we report that transactivation of transcription by p53 and G0/G1 arrest were impaired in PKR−/− cells upon conditions that ts p53 acquired a wild-type conformation. Phosphorylation of mouse p53 on Ser18 was defective in PKR−/− cells, consistent with an impaired transcriptional induction of the p53-inducible genes encoding p21WAF/Cip1 and Mdm2. In addition, Ser18 phosphorylation and transcriptional activation by mouse p53 were diminished in PKR−/− cells after DNA damage induced by the anticancer drug adriamycin or γ radiation but not by UV radiation. Furthermore, the specific phosphatidylinositol-3 (PI-3) kinase inhibitor LY294002 inhibited the induction of phosphorylation of Ser18 of p53 by adriamycin to a higher degree in PKR+/+ cells than in PKR−/− cells. These novel findings suggest that PKR enhances p53 transcriptional function and implicate PKR in cell signaling elicited by a specific type of DNA damage that leads to p53 phosphorylation, possibly through a PI-3 kinase pathway.


1996 ◽  
Vol 16 (11) ◽  
pp. 6295-6302 ◽  
Author(s):  
D R Taylor ◽  
S B Lee ◽  
P R Romano ◽  
D R Marshak ◽  
A G Hinnebusch ◽  
...  

The interferon-induced RNA-dependent protein kinase PKR is found in cells in a latent state. In response to the binding of double-stranded RNA, the enzyme becomes activated and autophosphorylated on several serine and threonine residues. Consequently, it has been postulated that autophosphorylation is a prerequisite for activation of the kinase. We report the identification of PKR sites that are autophosphorylated in vitro concomitantly with activation and examine their roles in the activation of PKR. Mutation of one site, threonine 258, results in a kinase that is less efficient in autophosphorylation and in phosphorylating its substrate, the initiation factor eIF2, in vitro. The mutant kinase is also impaired in vivo, displaying reduced ability to inhibit protein synthesis in yeast and mammalian cells and to induce a slow-growth phenotype in Saccharomyces cerevisiae. Mutations at two neighboring sites, serine 242 and threonine 255, exacerbated the effect. Taken together with earlier results (S. B. Lee, S. R. Green, M. B. Mathews, and M. Esteban, Proc. Natl. Acad. Sci. USA 91:10551-10555, 1994), these data suggest that the central part of the PKR molecule, lying between its RNA-binding and catalytic domains, regulates kinase activity via autophosphorylation.


2015 ◽  
Vol 116 (9) ◽  
pp. 1957-1967 ◽  
Author(s):  
Hiroki Shinohara ◽  
Jumpei Teramachi ◽  
Hirohiko Okamura ◽  
Di Yang ◽  
Toshihiko Nagata ◽  
...  

2007 ◽  
Vol 204 (6) ◽  
pp. 1295-1301 ◽  
Author(s):  
David Dynnes Ørsted ◽  
Stig Egil Bojesen ◽  
Anne Tybjærg-Hansen ◽  
Børge Grønne Nordestgaard

p53 is an important tumor suppressor, normally preventing cancer development via apoptosis. A genomic Arg72Pro substitution in the p53 protein has important influence on cell death via apoptosis, which could be beneficial. We therefore tested the hypotheses that this polymorphism influences longevity, survival after a cancer diagnosis, and risk of cancer in the general population. We examined a cohort of 9,219 participants ages 20–95 from the Danish general population with 100% follow-up. The overall 12-yr survival was increased in p53 Arg/Pro heterozygotes with 3% (P = 0.003) and in Pro/Pro homozygotes with 6% (P = 0.002) versus Arg/Arg homozygotes, corresponding to an increase in median survival of 3 yr for Pro/Pro versus Arg/Arg homozygotes. We also demonstrated an increased survival after the development of cancer, or even after the development of other life-threatening diseases, for Pro/Pro versus Arg/Arg homozygotes. The Arg72Pro substitution did not associate with decreased risk of cancer. In conclusion, in this large cohort from the general population, we show that a well-known functional single nucleotide polymorphism in the tumor suppressor p53 protein leads to increased longevity, but not to decreased risk of cancer. The increased longevity may be due to increased survival after a diagnosis of cancer or other life-threatening diseases.


2006 ◽  
Vol 80 (23) ◽  
pp. 11817-11826 ◽  
Author(s):  
Morgan Hakki ◽  
Emily E. Marshall ◽  
Katherine L. De Niro ◽  
Adam P. Geballe

ABSTRACT The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2α) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVΔE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2α kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVΔE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVΔE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVΔE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVΔE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2α.


Sign in / Sign up

Export Citation Format

Share Document