scholarly journals Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice

Oncogene ◽  
2007 ◽  
Vol 27 (18) ◽  
pp. 2542-2551 ◽  
Author(s):  
M Galiè ◽  
G Konstantinidou ◽  
D Peroni ◽  
I Scambi ◽  
C Marchini ◽  
...  
Leukemia ◽  
2006 ◽  
Vol 21 (2) ◽  
pp. 304-310 ◽  
Author(s):  
R Ramasamy ◽  
E W-F Lam ◽  
I Soeiro ◽  
V Tisato ◽  
D Bonnet ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5148-5148
Author(s):  
Rosetta Martiniello-Wilks ◽  
Stephen R. Larsen ◽  
Stephane Flamant ◽  
Jessamy C. Tiffen ◽  
Charles G. Bailey ◽  
...  

Abstract The efficacy of mesenchymal stem cells (MSC) is currently being examined as a clinical regenerative medicine for multiple sclerosis, cirrhosis, liver disease, tibial fractures, heart failure and graft versus host disease. MSC display an inherent tumor-tropic property that has been exploited for the targeted delivery of therapeutic genes to metastatic melanoma, glioma, breast and colon carcinoma in animal models. Advantages of using MSC include their ability for: self-renewal, ease of propagation and gene modification ex vivo; secretion of high levels of therapeutic protein; evasion of immune rejection; differentiation into connective tissue and tumor stroma; and long-term engraftment in vivo. This study explores the utility of MSC to deliver reporter or suicide genes to advanced Pca which is currently incurable using the syngeneic RM1 mouse model. Sca-1bright CD45− cells sorted from adherent bone marrow cells were shown to be true MSC by their ability to undergo tri-lineage differentiation in adipogeneic, osteogenic and chondrogenic media and their characteristic CD44+, CD90+, CD73+ and CD106+ phenotype. Lentiviral vectors showed sustained green fluorescent protein (GFP) reporter gene expression in MSC (MSC-GFP) for 50 passages by flow cytometry. When MSC-GFP (10e6 cells) were implanted into the mouse prostate with or without RM1 tumor cells on day 0, examination by full body fluorescence imaging (IVIS 100; Xenogen/Caliper) showed MSC persisted only within the tumor-bearing prostate (p<0.05; day 18). No MSC were detected in any other organ examined. To test their systemic homing ability, MSC-GFP (10e6 cells) were infused every second day (2–14) via the tail vein of mice in the presence or absence of RM1 lung pseudometastases. MSC persisted within the lungs of RM1 tumor-bearing mice alone (p<0.01) with no detectable MSC in any other organ examined (day 18). These results suggest MSC engraft organ-confined Pca and home to metastatic Pca. Gene directed enzyme prodrug therapy (GDEPT) describes the transfer of a suicide gene, not expressed in mammalian cells, into tumors using viral vectors. This renders tumors sensitive to prodrugs that are non-toxic to normal tissues. In our pre-clinical study, prostate tumors established from RM1 tumor cells stably transfected with fusion suicide gene cytosine deaminase/uracil phosphoribosyltransferase (CDUPRT) followed by systemic treatment with prodrug 5-fluorocytosine, showed significant reductions in prostate tumor growth and pseudometastases in the lungs (1). More recently, we stably transfected MSC with CDUPRT prior to implantation into established RM1 prostate tumors. In the presence of prodrug MSC-CDUPRT showed similar levels of Pca killing observed in the published experiment. In both experiments CDUPRT in the presence of prodrug significantly reduced (∼75%; p<0.05) the weight of RM1 prostate tumors compared to the control gene or no prodrug control mice. These results demonstrate that MSC can deliver suicide genes to developing Pca and efficiently convert prodrug to a toxic diffusible metabolite to suppress tumor growth. MSC implantation was well tolerated without observed toxicity and therefore show promise as a novel form of cell-directed suicide gene therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 352-352
Author(s):  
Michael Andreeff ◽  
Jennifer Dembinski ◽  
Brett M. Hall ◽  
Matus Studeny ◽  
Xiaoyang Ling ◽  
...  

Abstract The formation of stroma is essential for tumor growth and involves complex interactions between malignant tumor cells, and non-tumor stromal cells. We have previously demonstrated that mesenchymal stem cells (MSC) integrate into solid tumors as stromal elements (Cancer Res62:3603, 2002; JNCI96:1593, 2004,), suggesting the development of anti-cancer therapies based on the intratumoral production of agents by gene-modified MSC. However, no direct evidence has demonstrated this migration and selective engraftment into the tumor microenvironment. Therefore, we noninvasively visualized MSC using luciferase bioluminescence. MSC were labeled by a fiber modified Ad vector expressing firefly luciferase (AdLux-F/RGD) and these MSC-Lux were injected into normal (healthy) SCID mice or mice bearing established metastatic breast or ovarian tumors. Biodistributed MSC-Lux were imaged utilizing the Xenogen IVIS detection system. In normal mice, human MSC (hMSC) migrated to the lungs where they remained resident for 7–10 days. In animals bearing established metastatic lung tumors, IV injected hMSC again migrated to the lungs. However, in contrast to control mice, the Lux signal remained strong over a 15-day period with only a slight decrease over the first 10 days. After IP injection, hMSC-LUX were detected in the peritoneum, and after 7 days, no hMSC-LUX was detected in normal animals, while strong punctate regions of LUX-activity were observed in ovarian tumors. In contrast to SCID mice injected with hMSC, healthy Balb/C mice injected with Balb/C derived MSC-LUX initially migrated to the lungs and within 2.5 hrs had exited the lungs to remain liver and spleen resident for 5–7 days. When tumor cells were transduced with renilla luciferase constructs, the co-localization and dynamic interactions of firefly luciferase MSC and renilla luciferase tumors could be examined in detail. Mechanisms regulating the MSC-tumor interactions involve TGF-beta, HGF/c-Met, and EGFR and will be discussed. We then examined whether hMSC-producing interferon-beta (IFNb-MSC) could inhibit the growth of metastatic tumors in the lungs of SCID mice. When injected IV (4 doses of 106 MSC/week) into SCID mice bearing pulmonary metastases of carcinomas or melanomas, tumor growth was significantly inhibited as compared to untreated or vector-control MSC controls (p= 0.007), while recombinant IFNb protein (50,000 IU qod) was ineffective (p=0.14). IV injected IFNb-MSC prolonged the survival of mice bearing metastatic breast carcinomas (p=0.001) Intraperitoneal (IP) injections of IFN-MSC into mice carrying ovarian carcinomas resulted in doubling of survival in SKOV-3, and cures in 70% of mice carrying OVAR-3 tumors. MSC injected into the ipsilateral or contralateral carotid artery were found to localize to glioma xenografts in mice and IFNb-MSC significantly (p<0.05) prolonged survival of these mice. These data suggest that systemically administered gene-modified MSC selectively engraft into the tumor microenvironment and remain resident as part of the tumor architecture. MSC-expressing IFN-b inhibit the growth of melanomas, gliomas, metastatic breast and ovarian cancers in vivo and prolong the survival of mice bearing established tumors. Clinical trials are in preparation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingguo Zhao ◽  
Bo Hai ◽  
Jack Kelly ◽  
Samuel Wu ◽  
Fei Liu

Abstract Background Extracellular vesicles (EVs) and their mimics from mesenchymal stem cells (MSCs) are promising drug carriers to improve cancer treatment, but their application is hindered by donor variations and expansion limitations of conventional tissue-derived MSCs. To circumvent these issues, we made EV-mimicking nanovesicles from standardized MSCs derived from human induced pluripotent stem cells (iPSCs) with a theoretically limitless expandability, and examined the targeting capacity of these nanovesicles to prostate cancer. Methods Nanovesicles are made from intact iPSC-MSCs through serial extrusion. The selective uptake of fluorescently labeled nanovesicles by prostate cancer cells vs. non-tumor cells was examined with flow cytometry. For in vivo tracing, nanovesicles were labeled with fluorescent dye DiR or renilla luciferase. In mice carrying subcutaneous or bone metastatic PC3 prostate cancer, the biodistribution of systemically infused nanovesicles was examined with in vivo and ex vivo imaging of DiR and luminescent signals. A chemotherapeutic drug, docetaxel, was loaded into nanovesicles during extrusion. The cytotoxicities of nanovesicle-encapsulated docetaxel on docetaxel-sensitive and -resistant prostate cancer cells and non-tumor cells were examined in comparison with free docetaxel. Therapeutic effects of nanovesicle-encapsulated docetaxel were examined in mice carrying subcutaneous or bone metastatic prostate cancer by monitoring tumor growth in comparison with free docetaxel. Results iPSC-MSC nanovesicles are more selectively taken up by prostate cancer cells vs. non-tumor cells in vitro compared with EVs, membrane-only EV-mimetic nanoghosts and liposomes, which is not affected by storage for up to 6 weeks. In mouse models of subcutaneous and bone metastatic PC3 prostate cancer, systemically infused nanovesicles accumulate in tumor regions with significantly higher selectivity than liposomes. The loading of docetaxel into nanovesicles was efficient and did not affect the selective uptake of nanovesicles by prostate cancer cells. The cytotoxicities of nanovesicle-encapsulated docetaxel are significantly stronger on docetaxel-resistant prostate cancer cells and weaker on non-tumor cells than free docetaxel. In mouse models of subcutaneous and bone metastatic prostate cancer, nanovesicle-encapsulated docetaxel significantly decreased the tumor growth and toxicity to white blood cells compared with free docetaxel. Conclusions Our data indicate that EV-mimicking iPSC-MSC nanovesicles are promising to improve the treatment of metastatic prostate cancer.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Virginia Egea ◽  
Kai Kessenbrock ◽  
Devon Lawson ◽  
Alexander Bartelt ◽  
Christian Weber ◽  
...  

AbstractBone marrow-derived human mesenchymal stem cells (hMSCs) are recruited to damaged or inflamed tissues where they contribute to tissue repair. This multi-step process involves chemokine-directed invasion of hMSCs and on-site release of factors that influence target cells or tumor tissues. However, the underlying molecular mechanisms are largely unclear. Previously, we described that microRNA let-7f controls hMSC differentiation. Here, we investigated the role of let-7f in chemotactic invasion and paracrine anti-tumor effects. Incubation with stromal cell-derived factor-1α (SDF-1α) or inflammatory cytokines upregulated let-7f expression in hMSCs. Transfection of hMSCs with let-7f mimics enhanced CXCR4-dependent invasion by augmentation of pericellular proteolysis and release of matrix metalloproteinase-9. Hypoxia-induced stabilization of the hypoxia-inducible factor 1 alpha in hMSCs promoted cell invasion via let-7f and activation of autophagy. Dependent on its endogenous level, let-7f facilitated hMSC motility and invasion through regulation of the autophagic flux in these cells. In addition, secreted let-7f encapsulated in exosomes was increased upon upregulation of endogenous let-7f by treatment of the cells with SDF-1α, hypoxia, or induction of autophagy. In recipient 4T1 tumor cells, hMSC-derived exosomal let-7f attenuated proliferation and invasion. Moreover, implantation of 3D spheroids composed of hMSCs and 4T1 cells into a breast cancer mouse model demonstrated that hMSCs overexpressing let-7f inhibited tumor growth in vivo. Our findings provide evidence that let-7f is pivotal in the regulation of hMSC invasion in response to inflammation and hypoxia, suggesting that exosomal let-7f exhibits paracrine anti-tumor effects.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48654 ◽  
Author(s):  
Giovanna Bianchi ◽  
Fabio Morandi ◽  
Michele Cilli ◽  
Antonio Daga ◽  
Chiara Bocelli-Tyndall ◽  
...  

2021 ◽  
Vol 22 ◽  
Author(s):  
Soheila Montazersaheb ◽  
Ezzatollah Fathi ◽  
Ayoub Mamandi ◽  
Raheleh Farahzadi ◽  
Hamid Reza Heidari

: Tumors are made up of different types of cancer cells that contribute to tumor heterogeneity. Among these cells, cancer stem cells (CSCs) have a significant role in the onset of cancer and development. Like other stem cells, CSCs are characterized by the capacity for differentiation and self-renewal. A specific population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into mesoderm-specific cells. The pro-or anti-tumorigenic potential of MSCs on the proliferation and development of tumor cells has been reported as contradictory results. Also, tumor progression is specified by the corresponding tumor cells like the tumor microenvironment. The tumor microenvironment consists of a network of reciprocal cell types such as endothelial cells, immune cells, MSCs, and fibroblasts as well as growth factors, chemokines, and cytokines. In this review, recent findings related to the tumor microenvironment and associated cell populations, homing of MSCs to tumor sites, and interaction of MSCs with tumor cells will be discussed.


2012 ◽  
Vol 315 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Wei Zhu ◽  
Ling Huang ◽  
Yahong Li ◽  
Xu Zhang ◽  
Jianmei Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document