scholarly journals Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jinfeng Liu ◽  
Huansheng Dong ◽  
Yong Zhang ◽  
Mingjun Cao ◽  
Lili Song ◽  
...  

Abstract Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose and insulin tolerance tests were performed prior to, immediately and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR) and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin and increases in adiponectin and expression of SREBP-1, IR and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice.

Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Elena Bonzón-Kulichenko ◽  
Dominik Schwudke ◽  
Nilda Gallardo ◽  
Eduardo Moltó ◽  
Teresa Fernández-Agulló ◽  
...  

Obesity and type 2 diabetes are associated with insulin and leptin resistance, and increased ceramide contents in target tissues. Because the adipose tissue has become a central focus in these diseases, and leptin-induced increases in insulin sensitivity may be related to effects of leptin on lipid metabolism, we investigated herein whether central leptin was able to regulate total ceramide levels and the expression of enzymes involved in ceramide metabolism in rat white adipose tissue (WAT). After 7 d central leptin treatment, the total content of ceramides was analyzed by quantitative shotgun lipidomics mass spectrometry. The effects of leptin on the expression of several enzymes of the sphingolipid metabolism, sterol regulatory element binding protein (SREBP)-1c, and insulin-induced gene 1 (INSIG-1) in this tissue were studied. Total ceramide levels were also determined after surgical WAT denervation. Central leptin infusion significantly decreased both total ceramide content and the long-chain fatty acid ceramide species in WAT. Concomitant with these results, leptin decreased the mRNA levels of enzymes involved in de novo ceramide synthesis (SPT-1, LASS2, LASS4) and ceramide production from sphingomyelin (SMPD-1/2). The mRNA levels of enzymes of ceramide degradation (Asah1/2) and utilization (sphingomyelin synthase, ceramide kinase, glycosyl-ceramide synthase, GM3 synthase) were also down-regulated. Ceramide-lowering effects of central leptin were prevented by local autonomic nervous system denervation of WAT. Finally, central leptin treatment markedly increased INSIG-1 mRNA expression and impaired SREBP-1c activation in epididymal WAT. These observations indicate that in vivo central leptin, acting through the autonomic nervous system, regulates total ceramide levels and SREBP-1c proteolytic maturation in WAT, probably contributing to improve the overall insulin sensitivity. Central leptin decreases total ceramide levels and prevents sterol regulatory element binding protein (SREBP-1C) proteolytic maturation in white adipose tissue, and probably, in this way, contributes to improve the overall insulin sensitivity.


2004 ◽  
Vol 287 (6) ◽  
pp. E1039-E1048 ◽  
Author(s):  
Caroline Améen ◽  
Daniel Lindén ◽  
Britt-Mari Larsson ◽  
Agneta Mode ◽  
Agneta Holmäng ◽  
...  

We investigated whether the sexually dimorphic secretory pattern of growth hormone (GH) in the rat regulates hepatic gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes. SREBP-1c, fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (GPAT) mRNA were more abundant in female than in male livers, whereas acetyl-CoA carboxylase-1 (ACC1) and stearoyl-CoA desaturase-1 (SCD-1) were similarly expressed in both sexes. Hypophysectomized female rats were given GH as a continuous infusion or as two daily injections for 7 days to mimic the female- and male-specific GH secretory patterns, respectively. The female pattern of GH administration increased the expression of SREBP-1c, ACC1, FAS, SCD-1, and GPAT mRNA, whereas the male pattern of GH administration increased only SCD-1 mRNA. FAS and SCD-1 protein levels were regulated in a similar manner by GH. Incubation of primary rat hepatocytes with GH increased SCD-1 mRNA levels and decreased FAS and GPAT mRNA levels but had no effect on SREBP-1c mRNA. GH decreased hepatic liver X receptor-α (LXRα) mRNA levels both in vivo and in vitro. Feminization of the GH plasma pattern in male rats by administration of GH as a continuous infusion decreased insulin sensitivity and increased expression of FAS and GPAT mRNA but had no effect on SREBP-1c, ACC1, SCD-1, or LXRα mRNA. In conclusion, FAS and GPAT are specifically upregulated by the female secretory pattern of GH. This regulation is not a direct effect of GH on hepatocytes and does not involve changed expression of SREBP-1c or LXRα mRNA but is associated with decreased insulin sensitivity.


2017 ◽  
Vol 118 (11) ◽  
pp. 914-929 ◽  
Author(s):  
María Elvira López-Oliva ◽  
Alba Garcimartin ◽  
Emilia Muñoz-Martínez

AbstractThe effect and the role played by dietaryα-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously thatα-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possibleα-LAC-induced hepatic steatosis. We examine the ability of dietaryα-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n6) were fed with diets containing either chow or 14 %α-LAC for 4 weeks. Theα-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptorαβ(LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγtranscription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepaticde novolipogenesis. The opposite was found for the nuclear receptor PPARαand the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acidβ-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinaseα(AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in theα-LAC-fed mice. In conclusion, 4 weeks of 14 %α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγexpression and diminishing PPARα/CPT-1 expression and AMPKαphosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.


2002 ◽  
Vol 277 (22) ◽  
pp. 19353-19357 ◽  
Author(s):  
Naoya Yahagi ◽  
Hitoshi Shimano ◽  
Alyssa H. Hasty ◽  
Takashi Matsuzaka ◽  
Tomohiro Ide ◽  
...  

Endocrinology ◽  
2018 ◽  
Vol 160 (1) ◽  
pp. 193-204 ◽  
Author(s):  
Isadora C Furigo ◽  
Miriam F Suzuki ◽  
João E Oliveira ◽  
Angela M Ramos-Lobo ◽  
Pryscila D S Teixeira ◽  
...  

Abstract Previous studies have shown that bromocriptine mesylate (Bromo) lowers blood glucose levels in adults with type 2 diabetes mellitus; however, the mechanism of action of the antidiabetic effects of Bromo is unclear. As a dopamine receptor agonist, Bromo can alter brain dopamine activity affecting glucose control, but it also suppresses prolactin (Prl) secretion, and Prl levels modulate glucose homeostasis. Thus, the objective of the current study was to investigate whether Bromo improves insulin sensitivity via inhibition of Prl secretion. Male and female ob/ob animals (a mouse model of obesity and insulin resistance) were treated with Bromo and/or Prl. Bromo-treated ob/ob mice exhibited lower serum Prl concentration, improved glucose and insulin tolerance, and increased insulin sensitivity in the liver and skeletal muscle compared with vehicle-treated mice. Prl replacement in Bromo-treated mice normalized serum Prl concentration without inducing hyperprolactinemia. Importantly, Prl replacement partially reversed the improvements in glucose homeostasis caused by Bromo treatment. The effects of the Prl receptor antagonist G129R-hPrl on glucose homeostasis were also investigated. We found that central G129R-hPrl infusion increased insulin tolerance of male ob/ob mice. In summary, our findings indicate that part of Bromo effects on glucose homeostasis are associated with decrease in serum Prl levels. Because G129R-hPrl treatment also improved the insulin sensitivity of ob/ob mice, pharmacological compounds that inhibit Prl signaling may represent a promising therapeutic approach to control blood glucose levels in individuals with insulin resistance.


2019 ◽  
Vol 122 (6) ◽  
pp. 616-624 ◽  
Author(s):  
Yu Niu ◽  
Jintian He ◽  
Hussain Ahmad ◽  
Chao Wang ◽  
Xiang Zhong ◽  
...  

AbstractThe objective of the present study was to investigate the effect of curcumin on insulin resistance (IR) and hepatic lipid accumulation in intra-uterine growth restriction (IUGR). Rats with a normal birth weight (NBW) or IUGR were fed basic diets (NBW and IUGR groups) or basic diets supplemented with curcumin (NBW-C and IUGR-C groups) from 6 to 12 weeks. Rats in the IUGR group showed higher levels of glucose and homeostasis model assessment for insulin resistance index (HOMA-IR) (P< 0·05) than in the NBW group. The livers of IUGR rats exhibited higher (P< 0·05) concentration of TAG and lower (P< 0·05) activities of lipolysis enzymes compared with the normal rats. In response to dietary curcumin supplementation, concentrations of serum insulin, glucose and HOMA-IR, pyruvate, TAG, total cholesterol and NEFA in the liver were decreased (P< 0·05). The concentrations of glycogen and activities of lipolysis enzymes in the liver were increased (P< 0·05) in the IUGR-C group compared with the IUGR group. These results were associated with lower (P< 0·05) phosphorylated insulin receptor substrate 1, protein kinase B or Akt, glycogen synthase kinase 3β and expressions of sterol regulatory element binding protein 1 and fatty acid synthase (FASN); decreased expressions forCd36, sterol regulatory element binding protein 1c (Srebf1) andFasn; increased (P< 0·05) expression of PPARα; and expressions forPparaand hormone-sensitive lipase in the liver of IUGR-C rats than the IUGR rats. Maternal malnutrition caused IR and lipid accumulation in the liver. Curcumin supplementation prevented IR by regulating insulin signalling pathways and attenuated hepatic lipid accumulation.


Sign in / Sign up

Export Citation Format

Share Document