scholarly journals Functional Identification of Target by Expression Proteomics (FITExP) reveals protein targets and highlights mechanisms of action of small molecule drugs

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Alexey Chernobrovkin ◽  
Consuelo Marin-Vicente ◽  
Neus Visa ◽  
Roman A. Zubarev
2020 ◽  
Vol 21 (15) ◽  
pp. 5262 ◽  
Author(s):  
Qingxin Li ◽  
CongBao Kang

Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. We also demonstrate that structural biology provides insights into the function of a target and identifies a druggable site for rational drug design.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Nicole A. Tillie ◽  
Jayson L. Parker ◽  
Jordan J. Feld

Background and Aims.This study analyzed the risk of clinical trial failure of new drugs for hepatitis C between January 1998 and January 2015.Methods.Hepatitis C drug development trials that were in phases I–III of clinical trial testing were obtained from the publicly accessible clinical trial repository and other publicly available databases. Drug compounds were excluded from the study if they began their phase I testing before 1998, if they were not industry sponsored, or if they treated secondary complications of hepatitis C. Clinical trial success rates were analyzed in comparison to industry expectations. Further analysis was conducted on the molecule classifications, the mechanisms of action, and the trial endpoints.Results.One hundred and twenty-three unique drug compounds were found to fulfill the inclusion criteria, eight of which had FDA approval. The overall cumulative pass rate for hepatitis C drugs was 20%, which is double the industry expectation rate. Viral inhibitor small molecule drugs significantly reduced the risk of drug failure during clinical trials compared to other mechanisms of action.Conclusion.On average, one in every five drugs that began clinical testing will be approved for market. Viral inhibitor small molecule drugs are the most promising and hold the least risk.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 136
Author(s):  
Masahiko Terauchi ◽  
Atsushi Tamura ◽  
Yoshinori Arisaka ◽  
Hiroki Masuda ◽  
Tetsuya Yoda ◽  
...  

Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.


Sign in / Sign up

Export Citation Format

Share Document