scholarly journals The role of the coherence in the cross-correlation analysis of diffraction patterns from two-dimensional dense mono-disperse systems

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
T. Latychevskaia ◽  
G. F. Mancini ◽  
F. Carbone
2019 ◽  
Vol 18 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Jingjing Huang ◽  
Danlei Gu

In order to obtain richer information on the cross-correlation properties between two time series, we introduce a method called multiscale multifractal detrended cross-correlation analysis (MM-DCCA). This method is based on the Hurst surface and can be used to study the non-linear relationship between two time series. By sweeping through all the scale ranges of the multifractal structure of the complex system, it can present more information than the multifractal detrended cross-correlation analysis (MF-DCCA). In this paper, we use the MM-DCCA method to study the cross-correlations between two sets of artificial data and two sets of 5[Formula: see text]min high-frequency stock data from home and abroad. They are SZSE and SSEC in the Chinese market, and DJI and NASDAQ in the US market. We use Hurst surface and Hurst exponential distribution histogram to analyze the research objects and find that SSEC, SZSE and DJI, NASDAQ all show multifractal properties and long-range cross-correlations. We find that the fluctuation of the Hurst surface is related to the positive and negative of [Formula: see text], the change of scale range, the difference of national system, and the length of time series. The results show that the MM-DCCA method can give more abundant information and more detailed dynamic processes.


Fractals ◽  
2014 ◽  
Vol 22 (04) ◽  
pp. 1450007 ◽  
Author(s):  
YI YIN ◽  
PENGJIAN SHANG

In this paper, we employ the detrended cross-correlation analysis (DCCA) to investigate the cross-correlations between different stock markets. We report the results of cross-correlated behaviors in US, Chinese and European stock markets in period 1997–2012 by using DCCA method. The DCCA shows the cross-correlated behaviors of intra-regional and inter-regional stock markets in the short and long term which display the similarities and differences of cross-correlated behaviors simply and roughly and the persistence of cross-correlated behaviors of fluctuations. Then, because of the limitation and inapplicability of DCCA method, we propose multiscale detrended cross-correlation analysis (MSDCCA) method to avoid "a priori" selecting the ranges of scales over which two coefficients of the classical DCCA method are identified, and employ MSDCCA to reanalyze these cross-correlations to exhibit some important details such as the existence and position of minimum, maximum and bimodal distribution which are lost if the scale structure is described by two coefficients only and essential differences and similarities in the scale structures of cross-correlation of intra-regional and inter-regional markets. More statistical characteristics of cross-correlation obtained by MSDCCA method help us to understand how two different stock markets influence each other and to analyze the influence from thus two inter-regional markets on the cross-correlation in detail, thus we get a richer and more detailed knowledge of the complex evolutions of dynamics of the cross-correlations between stock markets. The application of MSDCCA is important to promote our understanding of the internal mechanisms and structures of financial markets and helps to forecast the stock indices based on our current results demonstrated the cross-correlations between stock indices. We also discuss the MSDCCA methods of secant rolling window with different sizes and, lastly, provide some relevant implications and issue.


Author(s):  
S B M Beck ◽  
N J Williamson ◽  
N D Sims ◽  
R Stanway

The pipeline systems used to carry liquids and gases for the ventilation of buildings, water distributions networks, and the oil and chemical industries are usually monitored by a multiplicity of pressure, flow, and valve position sensors. By comparing the input signal to a valve with the pressure reading from the network using cross-correlation analysis, the technique described in this paper enables a single sensor to be used for monitoring. Specifically, the offset and gradient change of the cross-correlation function show the time delay between the input wave and the acquired output signal. These reflections arise from junctions, valves, and terminations, which can be located effectively using the cross-correlation technique. Investigations using a T-shaped pipe network have been conducted with a valve inserted in the pipeline to introduce artificial water hammer-type perturbations into the system. Both computational and experimental data are presented and the results are compared with the actual pipe network geometry. It is shown that it is possible to identify the location of various features of the network from the reflections and thus to perform either system characterisation or condition monitoring.


2015 ◽  
Vol 455 (3) ◽  
pp. 2959-2968 ◽  
Author(s):  
G. Q. Ding ◽  
W. Y. Zhang ◽  
Y. N. Wang ◽  
Z. B. Li ◽  
J. L. Qu ◽  
...  

2017 ◽  
Vol 16 (01) ◽  
pp. 1750004 ◽  
Author(s):  
Chi Xie ◽  
Yingying Zhou ◽  
Gangjin Wang ◽  
Xinguo Yan

We use the multifractal detrended cross-correlation analysis (MF-DCCA) method to explore the multifractal behavior of the cross-correlation between exchange rates of onshore RMB (CNY) and offshore RMB (CNH) against US dollar (USD). The empirical data are daily prices of CNY/USD and CNH/USD from May 1, 2012 to February 29, 2016. The results demonstrate that: (i) the cross-correlation between CNY/USD and CNH/USD is persistent and its fluctuation is smaller when the order of fluctuation function is negative than that when the order is positive; (ii) the multifractal behavior of the cross-correlation between CNY/USD and CNH/USD is significant during the sample period; (iii) the dynamic Hurst exponents obtained by the rolling windows analysis show that the cross-correlation is stable when the global economic situation is good and volatile in bad situation; and (iv) the non-normal distribution of original data has a greater effect on the multifractality of the cross-correlation between CNY/USD and CNH/USD than the temporary correlation.


2018 ◽  
Vol 72 (10) ◽  
pp. 1548-1560
Author(s):  
Roman D. Oparin ◽  
Michael G. Kiselev

This work represents a comprehensive analysis of mid-infrared (mid-IR) spectra of ibuprofen diluted in supercritical CO2 (in the temperature range of 40–90 ℃ and at the CO2 density corresponding to 1.3 of its critical value). The study employed mathematical approaches based on data matrix analysis such as two-dimensional cross-correlation analysis (2D-COS) and principal component analysis (PCA). Two-dimensional cross-correlation analysis allowed us to reveal correlations between the spectral contributions constituting the analytical spectral band and assigned to certain ibuprofen conformers, as well as the significance of these correlations. It has been shown that the considerable increase in the total intensity of the analytical spectral band, proportional to the equilibrium ibuprofen concentration in the supercritical CO2 phase, is accompanied by certain redistribution of intensities of the spectral components related to the corresponding conformers. The PCA allowed us to determine the changes of intensities of individual spectral contributions for each thermodynamic point in the considered temperature range. It has been shown that these two complementary methods provide more precise information that may be used as the initial data in the classical analysis of spectral data based on spectral curve deconvolution into individual spectral contributions.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3464 ◽  
Author(s):  
Ivan Zaluzhnyy ◽  
Ruslan Kurta ◽  
Marcus Scheele ◽  
Frank Schreiber ◽  
Boris Ostrovskii ◽  
...  

Angular X-ray cross-correlation analysis (AXCCA) is a technique which allows quantitative measurement of the angular anisotropy of X-ray diffraction patterns and provides insights into the orientational order in the system under investigation. This method is based on the evaluation of the angular cross-correlation function of the scattered intensity distribution on a two-dimensional (2D) detector and further averaging over many diffraction patterns for enhancement of the anisotropic signal. Over the last decade, AXCCA was successfully used to study the anisotropy in various soft matter systems, such as solutions of anisotropic particles, liquid crystals, colloidal crystals, superlattices composed by nanoparticles, etc. This review provides an introduction to the technique and gives a survey of the recent experimental work in which AXCCA in combination with micro- or nanofocused X-ray microscopy was used to study the orientational order in various soft matter systems.


2020 ◽  
Vol 12 (3) ◽  
pp. 557 ◽  
Author(s):  
Chris G. Tzanis ◽  
Ioannis Koutsogiannis ◽  
Kostas Philippopoulos ◽  
Nikolaos Kalamaras

Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) was applied to time series of global methane concentrations and remotely-sensed temperature anomalies of the global lower and mid-troposphere, with the purpose of investigating the multifractal characteristics of their cross-correlated time series and examining their interaction in terms of nonlinear analysis. The findings revealed the multifractal nature of the cross-correlated time series and the existence of positive persistence. It was also found that the cross-correlation in the lower troposphere displayed more abundant multifractal characteristics when compared to the mid-troposphere. The source of multifractality in both cases was found to be mainly the dependence of long-range correlations on different fluctuation magnitudes. Multifractal Detrended Fluctuation Analysis (MF-DFA) was also applied to the time series of global methane and global lower and mid-tropospheric temperature anomalies to separately study their multifractal properties. From the results, it was found that the cross-correlated time series exhibit similar multifractal characteristics to the component time series. This could be another sign of the dynamic interaction between the two climate variables.


Sign in / Sign up

Export Citation Format

Share Document