scholarly journals Erratum: Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hojjat Alizadeh Zeinabad ◽  
Alireza Zarrabian ◽  
Ali Akbar Saboury ◽  
Ali Mohammad Alizadeh ◽  
Mojtaba Falahati
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hojjat Alizadeh Zeinabad ◽  
Alireza Zarrabian ◽  
Ali Akbar Saboury ◽  
Ali Mohammad Alizadeh ◽  
Mojtaba Falahati

Abstract Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes.


2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


2011 ◽  
Vol 26 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Meng-Li ZHAO ◽  
Yu-Chen YUE ◽  
Li YUAN ◽  
De-Jun LI ◽  
Xiao-Ying LÜ ◽  
...  

Author(s):  
C. Sridevi ◽  
A. Sailakumari

Background: In this paper, transient two-dimensional laminar boundary layer viscous incompressible free convective flow of water based nanofluid with carbon nanotubes (CNTs) past a moving vertical cylinder with variable surface temperature is studied numerically in the presence of thermal radiation and heat generation. Methods: The prevailing partial differential equations which model the flow with initial and boundary conditions are solved by implicit finite difference method of Crank Nicolson type which is unconditionally stable and convergent. Results: Influence of Grashof number (Gr), nanoparticle volume fraction ( ), heat generation parameter (Q), temperature exponent (m), radiation parameter (N) and time (t) on velocity and temperature profiles are sketched graphically and elaborated comprehensively. Conclusion: Analysis of Nusselt number and Skin friction coefficient are also discussed numerically for both single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs).


2020 ◽  
Vol 62 (11) ◽  
pp. 2173-2183
Author(s):  
V. V. Bolotov ◽  
E. V. Knyazev ◽  
P. M. Korusenko ◽  
S. N. Nesov ◽  
V. A. Sachkov

2021 ◽  
Vol 853 ◽  
pp. 156880
Author(s):  
Xiaohua Qi ◽  
Wenna Zhang ◽  
Na Yang ◽  
Di Yang ◽  
Igor Bychko ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Bilal ◽  
Hamna Arshad ◽  
Muhammad Ramzan ◽  
Zahir Shah ◽  
Poom Kumam

AbstractThe key objective of the present research is to examine the hybrid magnetohydrodynamics (MHD) nanofluid (Carbon-nanotubes and ferrous oxide–water) CNT–Fe3O4/H2 flow into a horizontal parallel channel with thermal radiation through squeezing and dilating porous walls. The parting motion is triggered by the porous walls of the channel. The fluid flow is time-dependent and laminar. The channel is asymmetric and the upper and lower walls are distinct in temperature and are porous. With the combination of nanoparticles of Fe3O4 and single and multi-wall carbon nanotubes, the hybrid nanofluid principle is exploited. By using the similarity transformation, the set of partial differential equations (PDEs) of this mathematical model, governed by momentum and energy equations, is reduced to corresponding ordinary differential equations (ODEs). A very simple numerical approach called the Runge–Kutta system of order four along with the shooting technique is used to achieve the solutions for regulating ODEs. MATLAB computing software is used to create temperature and velocity profile graphs for various emerging parameters. At the end of the manuscript, the main conclusions are summarized. Through different graphs, it is observed that hybrid-nanofluid has more prominent thermal enhancement than simple nanofluid. Further, the single-wall nanotubes have dominated impact on temperature than the multi-wall carbon nanotubes. From the calculations, it is also noted that Fe2O3–MWCNT–water has an average of 4.84% more rate of heat transfer than the Fe2O3–SWCNT–water. On the other hand, 8.27% more heat flow observed in Fe2O3–SWCNT–water than the simple nanofluid. Such study is very important in coolant circulation, inter-body fluid transportation, aerospace engineering, and industrial cleaning procedures, etc.


Sign in / Sign up

Export Citation Format

Share Document