scholarly journals Mechanistic insights from resolving ligand-dependent kinetics of conformational changes at ATP-gated P2X1R ion channels

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Alistair G. Fryatt ◽  
Sudad Dayl ◽  
Paul M. Cullis ◽  
Ralf Schmid ◽  
Richard J. Evans

In the Croonian Lecture for 1957, Sir Alan Hodgkin described the role of the channels selective for sodium and potassium ions in the conduction of the nervous impulse. An essential feature of these channels is the manner in which the complex kinetics of their opening and closing is controlled by the electric field across the membrane, and the purpose of the present lecture is to consider the advances that have been made in the past 25 years towards an understanding of the underlying molecular mechanisms. One such advance has been the successful recording, independently of the ionic currents, of the small asymmetry current known as the gating current, that accompanies the conformational changes that take place in the sodium channels. A quantitative analysis of the characteristics of the gating current suggests that activation is brought about by two more or less independent processes operating in parallel, to one of which the slower mechanism of inactivation is coupled sequentially. However, it is clear that a complete picture of the gating system will only be arrived at by combining evidence of this kind with that provided by other new lines of approach such as studies of single ion channels in various tissues by means of fluctuation analysis and the patch-clamping technique, and a reinvestigation of the kinetics of activation of the potassium channels.


2016 ◽  
Vol 113 (36) ◽  
pp. E5288-E5297 ◽  
Author(s):  
Brendan A. Bicknell ◽  
Geoffrey J. Goodhill

Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca2+ concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior.


Author(s):  
Leonard K. Kaczmarek

All neurons express a subset of over seventy genes encoding potassium channel subunits. These channels have been studied in auditory neurons, particularly in the medial nucleus of the trapezoid body. The amplitude and kinetics of various channels in these neurons can be modified by the auditory environment. It has been suggested that such modulation is an adaptation of neuronal firing patterns to specific patterns of auditory inputs. Alternatively, such modulation may allow a group of neurons, all expressing the same set of channels, to represent a variety of responses to the same pattern of incoming stimuli. Such diversity would ensure that a small number of genetically identical neurons could capture and encode many aspects of complex sound, including rapid changes in timing and amplitude. This review covers the modulation of ion channels in the medial nucleus of the trapezoid body and how it may maximize the extraction of auditory information.All neurons express a subset of over seventy genes encoding potassium channel subunits. These channels have been studied in auditory neurons, particularly in the medial nucleus of the trapezoid body. The amplitude and kinetics of various channels in these neurons can be modified by the auditory environment. It has been suggested that such modulation is an adaptation of neuronal firing patterns to specific patterns of auditory inputs. Alternatively, such modulation may allow a group of neurons, all expressing the same set of channels, to represent a variety of responses to the same pattern of incoming stimuli. Such diversity would ensure that a small number of genetically identical neurons could capture and encode many aspects of complex sound, including rapid changes in timing and amplitude. This review covers the modulation of ion channels in the medial nucleus of the trapezoid body and how it may maximize the extraction of auditory information.


2004 ◽  
Vol 124 (5) ◽  
pp. 475-488 ◽  
Author(s):  
Colin Ehnes ◽  
Ian C. Forster ◽  
Katja Kohler ◽  
Andrea Bacconi ◽  
Gerti Stange ◽  
...  

The putative first intracellular and third extracellular linkers are known to play important roles in defining the transport properties of the type IIa Na+-coupled phosphate cotransporter (Kohler, K., I.C. Forster, G. Stange, J. Biber, and H. Murer. 2002b. J. Gen. Physiol. 120:693–705). To investigate whether other stretches that link predicted transmembrane domains are also involved, the substituted cysteine accessibility method (SCAM) was applied to sites in the predicted first and fourth extracellular linkers (ECL-1 and ECL-4). Mutants based on the wild-type (WT) backbone, with substituted novel cysteines, were expressed in Xenopus oocytes, and their function was assayed by isotope uptake and electrophysiology. Functionally important sites were identified in both linkers by exposing cells to membrane permeant and impermeant methanethiosulfonate (MTS) reagents. The cysteine modification reaction rates for sites in ECL-1 were faster than those in ECL-4, which suggested that the latter were less accessible from the extracellular medium. Generally, a finite cotransport activity remained at the end of the modification reaction. The change in activity was due to altered voltage-dependent kinetics of the Pi-dependent current. For example, cys substitution at Gly-134 in ECL-1 resulted in rate-limiting, voltage-independent cotransport activity for V ≤ −80 mV, whereas the WT exhibited a linear voltage dependency. After cys modification, this mutant displayed a supralinear voltage dependency in the same voltage range. The opposite behavior was documented for cys substitution at Met-533 in ECL-4. Modification of cysteines at two other sites in ECL-1 (Ile-136 and Phe-137) also resulted in supralinear voltage dependencies for hyperpolarizing potentials. Taken together, these findings suggest that ECL-1 and ECL-4 may not directly form part of the transport pathway, but specific sites in these linkers can interact directly or indirectly with parts of NaPi-IIa that undergo voltage-dependent conformational changes and thereby influence the voltage dependency of cotransport.


1992 ◽  
Vol 285 (2) ◽  
pp. 419-425 ◽  
Author(s):  
U Christensen ◽  
L Mølgaard

The kinetics of a series of Glu-plasminogen ligand-binding processes were investigated at pH 7.8 and 25 degrees C (in 0.1 M-NaCl). The ligands include compounds analogous to C-terminal lysine residues and to normal lysine residues. Changes of the Glu-plasminogen protein fluorescence were measured in a stopped-flow instrument as a function of time after rapid mixing of Glu-plasminogen and ligand at various concentrations. Large positive fluorescence changes (approximately 10%) accompany the ligand-induced conformational changes of Glu-plasminogen resulting from binding at weak lysine-binding sites. Detailed studies of the concentration-dependencies of the equilibrium signals and the rate constants of the process induced by various ligands showed the conformational change to involve two sites in a concerted positive co-operative process with three steps: (i) binding of a ligand at a very weak lysine-binding site that preferentially, but not exclusively, binds C-terminal-type lysine ligands, (ii) the rate-determining actual-conformational-change step and (iii) binding of one more lysine ligand at a second weak lysine-binding site that then binds the ligand more tightly. Further, totally independent initial small negative fluorescence changes (approximately 2-4%) corresponding to binding at the strong lysine-binding site of kringle 1 [Sottrup-Jensen, Claeys, Zajdel, Petersen & Magnusson (1978) Prog. Chem. Fibrinolysis Thrombolysis 3, 191-209] were observed for the C-terminal-type ligands. The finding that the conformational change in Glu-plasminogen involves two weak lysine-binding sites indicates that the effect cannot be assigned to any single kringle and that the problem of whether kringle 4 or kringle 5 is responsible for the process resolves itself. Probably kringle 4 and 5 are both participating. The involvement of two lysine binding-sites further makes the high specificity of Glu-plasminogen effectors more conceivable.


2000 ◽  
Vol 350 (1) ◽  
pp. 139-147 ◽  
Author(s):  
Diego F. GÓMEZ CASATI ◽  
Miguel A. AON ◽  
Alberto A. IGLESIAS

The kinetic and (supra)molecular properties of the ultrasensitive behaviour of ADP-glucose pyrophosphorylase (AGPase) from Anabaena PCC 7120 (a cyanobacterium) were exhaustively studied. The response of the enzyme toward the allosteric activator 3-phosphoglycerate (3PGA) occurs with ultrasensitivity as a consequence of the cross-talk with the inhibitor Pi. Molecular ‘crowding’renders AGPase more sensitive to the interplay between the allosteric regulators and, consequently, enhances the ultrasensitive response. In crowded media, and when orthophosphate is present, the activation kinetics of the enzyme with 3PGA proceed with increased co-operativity and reduced affinity toward the activator. Under conditions of ultrasensitivity, the enzyme's maximal activation takes place in a narrow range of 3PGA concentrations. Moreover, saturation kinetics of the enzyme with respect to its substrates, glucose 1-phosphate and ATP, were different at low or high 3PGA levels in crowded media. Only under the latter conditions did AGPase exhibit discrimination between low or high levels of the activator, which increased the affinity toward the substrates and the maximal activity reached by the enzyme. Studies of fluorescence emission of tryptophan residues, fourth-derivative spectroscopy and size-exclusion chromatography indicated that the ultrasensitive behaviour is correlated with intramolecular conformational changes induced in the tertiary structure of the homotetrameric enzyme. The results suggest a physiological relevance of the ultrasensitive response of AGPase in vivo, since the enzyme could be subtly sensing changes in the levels of allosteric regulators and substrates, and thus determining the flux of metabolites toward synthesis of storage polysaccharides.


FEBS Letters ◽  
1994 ◽  
Vol 337 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Hideo Arakawa ◽  
Takuji Urisaka ◽  
Hirotsugu Tsuruta ◽  
Yoshiyuki Amemiya ◽  
Hiroshi Kihara ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sabrina Vullo ◽  
Nicolas Ambrosio ◽  
Jan P Kucera ◽  
Olivier Bignucolo ◽  
Stephan Kellenberger

Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.


Sign in / Sign up

Export Citation Format

Share Document