CHAPTER 11. Metallosupramolecular Materials for Energy Applications: Light Harvesting

Author(s):  
Vakayil K. Praveen ◽  
Ayyappanpillai Ajayaghosh
Author(s):  
Matteo Ambrosetti ◽  
Riccardo Balzarotti ◽  
Laura Fratalocchi ◽  
Mauro Bracconi ◽  
Gianpiero Groppi ◽  
...  

2012 ◽  
Vol 1445 ◽  
Author(s):  
Woo-Jin An ◽  
Jessica Co-Reyes ◽  
Vivek B. Shah ◽  
Wei-Ning Wang ◽  
Gregory S. Orf ◽  
...  

ABSTRACTAll photosynthetic organisms contain light-harvesting antenna complexes and electron transfer complexes called reaction centers. Some photosynthetic bacteria contain large (~100 MDa) peripheral antenna complexes known as chlorosomes. Chlorosomes lose their reaction center when they are extracted from organisms. Lead sulfide (PbS) quantum dots (QDs) were used for artificial reaction centers. Successive ionic layer adsorption and reaction (SILAR) allows different sizes of PbS QDs with different cycles to be easily deposited onto the nanostructured columnar titanium dioxide (TiO2) film with single crystal. Chlorosomes were sequentially deposited onto the PbS QDs surface by electrospray. Compared to the typical PbS QD sensitized solar cells, overall energy conversion efficiency increased with the Förster resonance energy transfer (FRET) effect between PbS QDs and chlorosomes.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3281 ◽  
Author(s):  
Melisa del Barrio ◽  
Gabriel Luna-López ◽  
Marcos Pita

Research on biosensors is growing in relevance, taking benefit from groundbreaking knowledge that allows for new biosensing strategies. Electrochemical biosensors can benefit from research on semiconducting materials for energy applications. This research seeks the optimization of the semiconductor-electrode interfaces including light-harvesting materials, among other improvements. Once that knowledge is acquired, it can be implemented with biological recognition elements, which are able to transfer a chemical signal to the photoelectrochemical system, yielding photo-biosensors. This has been a matter of research as it allows both a superior suppression of background electrochemical signals and the switching ON and OFF upon illumination. Effective electrode-semiconductor interfaces and their coupling with biorecognition units are reviewed in this work.


Author(s):  
J. Anthony VanDuzer

SummaryRecently, there has been a proliferation of international agreements imposing minimum standards on states in respect of their treatment of foreign investors and allowing investors to initiate dispute settlement proceedings where a state violates these standards. Of greatest significance to Canada is Chapter 11 of the North American Free Trade Agreement, which provides both standards for state behaviour and the right to initiate binding arbitration. Since 1996, four cases have been brought under Chapter 11. This note describes the Chapter 11 process and suggests some of the issues that may arise as it is increasingly resorted to by investors.


Author(s):  
Werner Kühlbrandt ◽  
Da Neng Wang ◽  
K.H. Downing

The light-harvesting chlorophyll-a/b protein complex (LHC-II) is the most abundant membrane protein in the chloroplasts of green plants where it functions as a molecular antenna of solar energy for photosynthesis. We have grown two-dimensional (2d) crystals of the purified, detergent-solubilized LHC-II . The crystals which measured 5 to 10 μm in diameter were stabilized for electron microscopy by washing with a 0.5% solution of tannin. Electron diffraction patterns of untilted 2d crystals cooled to 130 K showed sharp spots to 3.1 Å resolution. Spot-scan images of 2d crystals were recorded at 160 K with the Berkeley microscope . Images of untilted crystals were processed, using the unbending procedure by Henderson et al . A projection map of the complex at 3.7Å resolution was generated from electron diffraction amplitudes and high-resolution phases obtained by image processing .A difference Fourier analysis with the same image phases and electron diffraction amplitudes recorded of frozen, hydrated specimens showed no significant differences in the 3.7Å projection map. Our tannin treatment therefore does not affect the structural integrity of the complex.


2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


Sign in / Sign up

Export Citation Format

Share Document