CHAPTER 16. Fibroblastic Cell-derived Extracellular Matrices: A Cell Culturing System to Model Key Aspects of the Tumor Microenvironment

Author(s):  
J. C. Gardiner ◽  
K. S. Raghavan ◽  
J. I. Alexander ◽  
J. Franco-Barraza ◽  
E. Cukierman
Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3286
Author(s):  
Dariusz Lachowski ◽  
Carlos Matellan ◽  
Ernesto Cortes ◽  
Alberto Saiani ◽  
Aline F. Miller ◽  
...  

The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A).


1984 ◽  
Vol 99 (4) ◽  
pp. 1398-1404 ◽  
Author(s):  
C Decker ◽  
R Greggs ◽  
K Duggan ◽  
J Stubbs ◽  
A Horwitz

Neff et al. (1982, J. Cell Biol., 95:654-666) have described a monoclonal antibody, CSAT, directed against a cell surface antigen that participates in the adhesion of skeletal muscle to extracellular matrices. We used the same antibody to compare and parse the determinants of adhesion and morphology on myogenic and fibrogenic cells. We report here that the antigen is present on skeletal and cardiac muscle and on tendon, skeletal, dermal, and cardiac fibroblasts; however, its contribution to their morphology and adhesion is different. The antibody produces large alterations in the morphology and adhesion of skeletal myoblasts and tendon fibroblasts; in contrast, its effects on the cardiac fibroblasts are not readily detected. The effects of CSAT on the other cell types, i.e., dermal and skeletal fibroblasts, cardiac muscle, 5-bromodeoxyuridine-treated skeletal muscle, lie between these extremes. The effects of CSAT on the skeletal myoblasts depends on the calcium concentration in the growth medium and on the culture age. We interpret these differential responses to CSAT as revealing differences in the adhesion of the various cells to extracellular matrices. This interpretation is supported by parallel studies using quantitative assays of cell-matrix adhesion. The likely origin of these adhesive differences is the progressive display of different kinds of adhesion-related molecules and their organizational complexes on increasingly adhesive cells. The antigen to which CSAT is directed is present on all of the above cells and thus appears to be a lowest common denominator of their adhesion to extracellular matrices.


2019 ◽  
Author(s):  
L Lee ◽  
L Boorman ◽  
E Glendenning ◽  
C Christmas ◽  
P Sharp ◽  
...  

AbstractInhibitory interneurons can evoke vasodilation and vasoconstriction, making them potential cellular drivers of neurovascular coupling. However, the specific regulatory roles played by particular interneuron subpopulations remain unclear. Our purpose was therefore to adopt a cell-specific optogenetic approach to investigate how somatostatin (SST) and neuronal nitric oxide synthase (NOS1)-expressing interneurons might influence neurovascular relationships. In mice, specific activation of SST- or NOS1-interneurons was sufficient to evoke haemodynamic changes similar to those evoked by physiological whisker stimulation. In the case of NOS1-interneurons, robust haemodynamic changes occurred with minimal changes in neural activity. Conversely, activation of SST-interneurons produced robust changes in evoked neural activity with shallow cortical excitation and pronounced deep layer cortical inhibition. This often resulted in a central increase in blood volume with corresponding surround decrease, analogous to the negative BOLD signal. These results demonstrate the role of specific populations of cortical interneurons in the active control of neurovascular function.


2010 ◽  
Vol 70 (13) ◽  
pp. 5281-5292 ◽  
Author(s):  
Carmen Z. Michaylira ◽  
Gabrielle S. Wong ◽  
Charles G. Miller ◽  
Christie M. Gutierrez ◽  
Hiroshi Nakagawa ◽  
...  

Author(s):  
Janusz Franco-Barraza ◽  
Kristopher S. Raghavan ◽  
Tiffany Luong ◽  
Edna Cukierman

2006 ◽  
Vol 21 (4) ◽  
pp. 449-464 ◽  
Author(s):  
Bruce D. Lee ◽  
Brian F. Jewett ◽  
Robert B. Wilhelmson

Abstract In the 19 April 1996 Illinois tornado outbreak, cell mergers played a very important role in the convective evolution. With a large number of cells forming within a short time period, the early stages of cell organization were marked by cell merger interactions and cell attrition that led to a pattern of isolated tornadic supercells as described in Part I of this study. Twenty-six mergers were documented and analyzed. Storm-rotation-induced differential cell propagation accounted for 58% of these 26 cell mergers while differing cell speeds prompted 27% of the mergers. Cell merger characterizations were utilized to describe the cell reflectivity coalescence morphology including aspects of new cell development, development along the periphery of an existing cell, or an upward pulse in the cell intensity of a dominant cell. In cases where the merging cells were of similar intensity, a rapidly developing cellular pulse “bridging” the two echoes was often observed. When the relationship between short-term cell intensity changes and cell mergers was examined, it was found that the maximum reflectivity tendency showed a bias toward higher reflectivity for the product storm. Depending upon the radar elevation angle utilized, 27%–44% of mergers were associated with an increase in peak reflectivity while 40%–58% of the storms realized little or no increase. With respect to short-term cell rotation changes, the merger signal was marked. Depending upon the length of the evaluation window, in 44%–60% of the mergers, there was evidence of a merger-associated increase in cell rotation. When considering the association between tornado occurrence and cell mergers, a striking 54% of the tornadoes occurred within 15 min before or after a cell merger. This high percentage is strongly suggestive of a physical relationship between storm mergers and tornadogenesis. A discussion is presented of potential merger scenarios and favorable ambient environmental conditions that may have been conducive to tornadogenesis in this event. Suggestions are presented to raise the awareness level of forecasters to key aspects of cell evolution and interaction in nowcasting severe convection.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (19) ◽  
pp. 3221-3233 ◽  
Author(s):  
Yu Ling Huang ◽  
Jeffrey E. Segall ◽  
Mingming Wu

Microfluidic model for the physical tumor microenvironment: intramural and interstitial flows and extracellular matrices (ECMs).


2007 ◽  
Vol 10 (1) ◽  
pp. 11-20 ◽  
Author(s):  
J. Y. Kim ◽  
H. Park ◽  
K. H. Kwon ◽  
J. Y. Park ◽  
J. Y. Baek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document