High-speed ultraviolet-visible-near infrared photodiodes based on p-ZnS nanoribbon–n-silicon heterojunction

CrystEngComm ◽  
2013 ◽  
Vol 15 (8) ◽  
pp. 1635 ◽  
Author(s):  
Yong-Qiang Yu ◽  
Lin-Bao Luo ◽  
Zhi-Feng Zhu ◽  
Biao Nie ◽  
Yu-Gang Zhang ◽  
...  



Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 428
Author(s):  
Reza Masoudian Saadabad ◽  
Christian Pauly ◽  
Norbert Herschbach ◽  
Dragomir N. Neshev ◽  
Haroldo T. Hattori ◽  
...  

Fast detection of near-infrared (NIR) photons with high responsivity remains a challenge for photodetectors. Germanium (Ge) photodetectors are widely used for near-infrared wavelengths but suffer from a trade-off between the speed of photodetection and quantum efficiency (or responsivity). To realize a high-speed detector with high quantum efficiency, a small-sized photodetector efficiently absorbing light is required. In this paper, we suggest a realization of a dielectric metasurface made of an array of subwavelength germanium PIN photodetectors. Due to the subwavelength size of each pixel, a high-speed photodetector with a bandwidth of 65 GHz has been achieved. At the same time, high quantum efficiency for near-infrared illumination can be obtained by the engineering of optical resonant modes to localize optical energy inside the intrinsic Ge disks. Furthermore, small junction capacitance and the possibility of zero/low bias operation have been shown. Our results show that all-dielectric metasurfaces can improve the performance of photodetectors.



2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Elena Goi ◽  
Xi Chen ◽  
Qiming Zhang ◽  
Benjamin P. Cumming ◽  
Steffen Schoenhardt ◽  
...  

AbstractOptical machine learning has emerged as an important research area that, by leveraging the advantages inherent to optical signals, such as parallelism and high speed, paves the way for a future where optical hardware can process data at the speed of light. In this work, we present such optical devices for data processing in the form of single-layer nanoscale holographic perceptrons trained to perform optical inference tasks. We experimentally show the functionality of these passive optical devices in the example of decryptors trained to perform optical inference of single or whole classes of keys through symmetric and asymmetric decryption. The decryptors, designed for operation in the near-infrared region, are nanoprinted on complementary metal-oxide–semiconductor chips by galvo-dithered two-photon nanolithography with axial nanostepping of 10 nm1,2, achieving a neuron density of >500 million neurons per square centimetre. This power-efficient commixture of machine learning and on-chip integration may have a transformative impact on optical decryption3, sensing4, medical diagnostics5 and computing6,7.



2021 ◽  
Vol 255 ◽  
pp. 01002
Author(s):  
Daniel Benedikovic ◽  
Leopold Virot ◽  
Guy Aubin ◽  
Jean-Michel Hartmann ◽  
Farah Amar ◽  
...  

Optical photodetectors are at the forefront of photonic research since the rise of integrated optics. Photodetectors are fundamental building blocks for chip-scale optoelectronics, enabling conversion of light into an electrical signal. Such devices play a key role in many surging applications from communication and computation to sensing, biomedicine and health monitoring, to name a few. However, chip integration of optical photodetectors with improved performances is an on-going challenge for mainstream optical communications at near-infrared wavelengths. Here, we present recent advances in heterostructured silicon-germanium-silicon p-i-n photodetectors, enabling high-speed detection on a foundry-compatible monolithic platform.



Science ◽  
2018 ◽  
Vol 361 (6409) ◽  
pp. 1358-1363 ◽  
Author(s):  
David R. Carlson ◽  
Daniel D. Hickstein ◽  
Wei Zhang ◽  
Andrew J. Metcalf ◽  
Franklyn Quinlan ◽  
...  

Light sources that are ultrafast and ultrastable enable applications like timing with subfemtosecond precision and control of quantum and classical systems. Mode-locked lasers have often given access to this regime, by using their high pulse energies. We demonstrate an adaptable method for ultrastable control of low-energy femtosecond pulses based on common electro-optic modulation of a continuous-wave laser light source. We show that we can obtain 100-picojoule pulse trains at rates up to 30 gigahertz and demonstrate sub–optical cycle timing precision and useful output spectra spanning the near infrared. Our source enters the few-cycle ultrafast regime without mode locking, and its high speed provides access to nonlinear measurements and rapid transients.



Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 892
Author(s):  
Dieter Reenaers ◽  
Wouter Marchal ◽  
Ianto Biesmans ◽  
Philippe Nivelle ◽  
Jan D’Haen ◽  
...  

The field of printed electronics is rapidly evolving, producing low cost applications with enhanced performances with transparent, stretchable properties and higher reliability. Due to the versatility of printed electronics, industry can consider the implementation of electronics in a way which was never possible before. However, a post-processing step to achieve conductive structures—known as sintering—limits the production ease and speed of printed electronics. This study addresses the issues related to fast sintering without scarifying important properties such as conductivity and surface roughness. A drop-on-demand inkjet printer is employed to deposit silver nanoparticle-based inks. The post-processing time of these inks is reduced by replacing the conventional oven sintering procedure with the state-of-the-art method, named near-infrared sintering. By doing so, the post-processing time shortens from 30–60 min to 6–8 s. Furthermore, the maximum substrate temperature during sintering is reduced from 200 °C to 120 °C. Based on the results of this study, one can conclude that near-infrared sintering is a ready-to-industrialize post-processing method for the production of printed electronics, capable of sintering inks at high speed, low temperature and with low complexity. Furthermore, it becomes clear that ink optimization plays an important role in processing inkjet printable inks, especially after being near-infrared sintered.



2016 ◽  
Vol 21 (1) ◽  
pp. 016010 ◽  
Author(s):  
Bernhard B. Zimmermann ◽  
Qianqian Fang ◽  
David A. Boas ◽  
Stefan A. Carp


2011 ◽  
Vol 12 (1) ◽  
pp. 34-38 ◽  
Author(s):  
J.B. Wang ◽  
W.L. Li ◽  
B. Chu ◽  
C.S. Lee ◽  
Z.S. Su ◽  
...  


2018 ◽  
Vol 11 (4) ◽  
pp. e201870139
Author(s):  
Mika Ishigaki ◽  
Takashi Nishii ◽  
Paralee Puangchit ◽  
Yui Yasui ◽  
Christian W. Huck ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document