scholarly journals Phosphomolybdenum Blue Detection – A Review of Characteristics, Achievements, Challenges and Future Prospects

2020 ◽  
Vol 61 (1) ◽  
pp. 43-49
Author(s):  
G. N. Doku ◽  
W. K. Agbozo ◽  
S. J. Haswell ◽  
T. McCreedy

Phosphate detection in the environment (especially, water bodies) is very essential in view of its consequent pollution effects on eutrophication. Continuous monitoring of phosphate concentration (and phosphorus compounds in general) in water samples has been based on phosphomolybdenum blue formation coupled with spectrophotometric detection. Continu­ous flow injection analyses (FIA) are well known to present numerous advantages over batch methods. Furthermore, the development of on-chip micro-channel analytical (μFIA) systems begun and have gained much attention within the last two decades in view of the striking advantages over conventional FIA techniques. This paper reviews published information on detection of phosphomolybdenum blue in conventional systems as well as on micro-chip. It reports on the challenges encountered (interference from other complex anions), the achieve­ments made so far (intereference removal by electrokinetic separation) and what the future holds (simultaneous determination).

2017 ◽  
Vol 2017 (S1) ◽  
pp. 1-40
Author(s):  
Subramanian S. Iyer (Subu)

Silicon features have scaled by over 1500X for over six decades, and with the adoption of innovative materials delivered better power-performance, density and till recently, cost per function, almost every generation. This has spawned a vibrant system-on-chip (SoC) approach, where progressively more function has been integrated on a single die. The integration of multiple dies on packages and boards has, however, scaled only modestly by a factor of three to five times. However, as SoCs have become bigger and more complex, the Non-Recurring Engineering (NRE) Charge and time to market have both ballooned out of control leading to ever increasing market consolidation. We need to address this problem through novel methods of system Integration. With the well-documented slowing down of scaling and the advent of the Internet of Things, there is a focus on heterogeneous integration and system-level scaling. Packaging itself is undergoing a transformation that focuses on overall system performance through integration rather than on packaging individual components. We propose ways in which this transformation can evolve to provide a significant value at the system level while providing a significantly lower barrier to entry compared with a chip-based SoC approach that is currently used. More importantly it will allow us to re-architect systems in a very significant way. This transformation is already under way with 3-D stacking of dies, Wafer level fan-out processing, and will evolve to make heterogeneous integration the backbone of a new SoC methodology, extending to integrate entire Systems on Wafers (SoWs). We will describe the technology we use and the results to-date. This has implications in redefining the memory hierarchy in conventional systems and in neuromorphic systems. We extend these concepts to flexible and biocompatible electronics.


Lab on a Chip ◽  
2012 ◽  
Vol 12 (13) ◽  
pp. 2385 ◽  
Author(s):  
Seung Ah Lee ◽  
Guoan Zheng ◽  
Nandini Mukherjee ◽  
Changhuei Yang

Author(s):  
Jana Felbel ◽  
Anett Reichert ◽  
Mark Kielpinski ◽  
Matthias Urban ◽  
Thomas Henkel

A microfluidic chip system for flow-through PCR reactions with an optimized thermal profile consisting of five temperature zones was presented. It allows the implementation of one PCR cycle in a half channel loop. In contrast, conventional systems with a three zones arrangement require a complete channel loop per cycle. Therefore, this arrangement increases the level of integration and allows the implementation of a 40 cycles flow-through thermocycler on the footprint of a microscope slide. To obtain a high throughput of samples in a small volume (10–100 nl), the fluidic chip device was designed to operate at segmented-flow conditions for PCR. That way, each droplet may contain a single sample that is independently processed while transported through the microchannel. To achieve stable fluidic conditions, the surface of the micro-channels was modified. In addition to the successful flow-through PCR reaction in the micro reactor, the detection of the tumor suppressor p53 for clinical diagnostics was demonstrated.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1492
Author(s):  
Thilo Pudleiner ◽  
Elias Sutter ◽  
Jörg Knyrim ◽  
Christian Karnutsch

A novel compact laser absorption spectrometer is developed for colorimetric detection. We demonstrate the realization of the system as well as example measurements of phosphate in water samples based on the malachite green (MG) method. A phosphate concentration range of to (which corresponds to a molar concentration range of to ) is investigated. This photometer demonstrates the ease of integration of organic distributed feedback (DFB) lasers and their miniaturizability, leading the way toward optofluidic on-chip absorption spectrometers. We constructed an optically pumped organic second-order DFB laser on a transparent substrate, including a transparent encapsulation layer, to have access to both emission directions of the surface-emitting laser. Using the two different surface emission directions of the laser resonator allows monitoring of the emitted light intensity without using additional optical elements. Based on these advances, it is possible to miniaturize the measurement setup of a laser absorption spectrometer and to measure analytes, such as phosphate.


If risk is to be understood by the public, the sometimes abstruse numbers and calculation must be put into perspective. In terms of energy, the simplest way is to compare the risk per unit output for different forms of production. Previous studies have suggested that coal- and oil-fired electricity have higher overall risk than nuclear power, due primarily to the former’s air pollution effects. While newer, non-conventional energy forms such as solar and wind power may appear at first glance to be risk-free, this is not so. Because of the diluteness of the incoming energy, these non-conventional systems require large numbers of collectors per unit energy output. In turn, considerable quantities of steel, glass, copper, aluminium etc., are required, the production of which incurs occupational risk. In consequence, non-conventional systems can have substantial risk to health. The implications of this and Siddall's recent calculations on cost-benefit analysis are explored in terms of public policy.


2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


Sign in / Sign up

Export Citation Format

Share Document