scholarly journals A system mathematical model of a cell–cell communication network in amyotrophic lateral sclerosis

2013 ◽  
Vol 9 (3) ◽  
pp. 398 ◽  
Author(s):  
Hongwei Shao ◽  
Ying He ◽  
King C. P. Li ◽  
Xiaobo Zhou
Author(s):  
Sascha Jung ◽  
Kartikeya Singh ◽  
Antonio del Sol

Abstract The functional specialization of cell types arises during development and is shaped by cell–cell communication networks determining a distribution of functional cell states that are collectively important for tissue functioning. However, the identification of these tissue-specific functional cell states remains challenging. Although a plethora of computational approaches have been successful in detecting cell types and subtypes, they fail in resolving tissue-specific functional cell states. To address this issue, we present FunRes, a computational method designed for the identification of functional cell states. FunRes relies on scRNA-seq data of a tissue to initially reconstruct the functional cell–cell communication network, which is leveraged for partitioning each cell type into functional cell states. We applied FunRes to 177 cell types in 10 different tissues and demonstrated that the detected states correspond to known functional cell states of various cell types, which cannot be recapitulated by existing computational tools. Finally, we characterize emerging and vanishing functional cell states in aging and disease, and demonstrate their involvement in key tissue functions. Thus, we believe that FunRes will be of great utility in the characterization of the functional landscape of cell types and the identification of dysfunctional cell states in aging and disease.


2019 ◽  
Vol 52 (26) ◽  
pp. 38-44
Author(s):  
Pedro L. Varela ◽  
Pedro T. Monteiro ◽  
Claudine Chaouiya

2013 ◽  
Vol 9 (6) ◽  
pp. 406-406
Author(s):  
Jasmine Lee ◽  
Jien Wu ◽  
Yinyue Deng ◽  
Jing Wang ◽  
Chao Wang ◽  
...  

2011 ◽  
Vol 82 (3) ◽  
pp. 619-633 ◽  
Author(s):  
Stéphane Perchat ◽  
Thomas Dubois ◽  
Samira Zouhir ◽  
Myriam Gominet ◽  
Sandrine Poncet ◽  
...  

2021 ◽  
Author(s):  
Elizaveta I. Ustyantseva ◽  
Suren M. Zakian ◽  
Sergey P. Medvedev

ABSTRACTBackgroundOxidative stress plays an important role in the development of neurodegenerative diseases: it either can be the initiator or part of a pathological cascade leading to the neuron’s death. Although a lot of methods are known for oxidative stress study, most of them operate on non-native cellular substrates or interfere with the cell functioning. Genetically encoded (GE) biosensors of oxidative stress demonstrated their general functionality and overall safety in various live systems. However, there is still insufficient data regarding their use for research of disease-related phenotypes in relevant model systems, such as human cells.MethodsWe applied CRISPR/Cas9 genome editing to introduce mutations (c.272A>C and c.382G>C) in the associated with amyotrophic lateral sclerosis SOD1 gene of induced pluripotent stem cells (iPSC) obtained from a healthy individual. Using CRISPR/Cas9, we modified these mutant iPSC lines, as well as the parental iPSC line, and a patient-specific SOD1D91A/D91A iPSC line with ratiometric GE biosensors of cytoplasmic (Cyto-roGFP2-Orp1) and mitochondrial (Mito-roGFP2-Orp1) H2O2. The biosensors sequences along with a specific transactivator for doxycycline-controllable expression were inserted in the “safe harbor” AAVS1 (adeno-associated virus site 1) locus. We differentiated these transgenic iPSCs into motor neurons and investigated the functionality of the biosensors in such a system. We measured relative oxidation in the cultured motor neurons and its dependence on culture conditions, age, and genotype, as well as kinetics of H2O2 elimination in real-time.ResultsWe developed a cell-based platform consisting of isogenic iPSC lines with different genotypes associated with amyotrophic lateral sclerosis. The iPSC lines were modified with GE biosensors of cytoplasmic and mitochondrial H2O2. We provide proof-of-principle data showing that this approach may be suitable for monitoring oxidative stress in cell models of various neurodegenerative diseases as the biosensors reflect the redox state of neurons.ConclusionWe found that the GE biosensors inserted in the AAVS1 locus remain functional in motor neurons and reflect pathological features of mutant motor neurons, although the readout largely depends on the severity of the mutation.


Sign in / Sign up

Export Citation Format

Share Document