Removal of multifold heavy metal contaminations in drinking water by porous magnetic Fe2O3@AlO(OH) superstructure

2013 ◽  
Vol 1 (3) ◽  
pp. 473-477 ◽  
Author(s):  
Xiulin Yang ◽  
Xueyun Wang ◽  
Yongqiang Feng ◽  
Guoqiang Zhang ◽  
Taishan Wang ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Mohd Usman Khan ◽  
Nachiketa Rai ◽  
Mukesh Kumar Sharma

<p>As contamination in groundwater has been reported from various regions of the Indian subcontinent but no data related to heavy metal contamination of groundwater has been reported for the Bahraich area in the Indo-Gangetic plains. We report the first dataset on arsenic contamination and groundwater hydrogeochemistry, in Bahraich. This includes concentrations of heavy metal such as As, Mn, and Fe, along with major cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>and Mg<sup>2+</sup>) and anions (F<sup>-</sup>, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and PO<sub>4</sub><sup>3-</sup>), and dissolved organic carbon (DOC), along with various physico-chemical parameters such as EC, pH, and Eh from samples collected during two extensive field campaigns conducted during pre-monsoon, and post-monsoon seasons respectively. The combined use of geochemical modeling and multivariate statistical approaches such as principal component analysis (PCA) and correlation analysis (CA) suggest several processes affecting the geochemistry of groundwater including the lithological characteristics of aquifers and anthropogenic activities.</p><p>The groundwater of the study area predominantly belongs to the Ca-Mg-HCO<sub>3</sub> type hydrochemical facies. HCO<sub>3</sub><sup>−</sup>/Na<sup>+</sup> and Ca<sup>2+</sup>/Na<sup>+</sup> signatures of groundwater indicate the influence of silicate weathering and carbonate dissolution processes with the insignificant role of evaporate dissolution mechanism. As concentration was found to range from 0.6 μg/L to ~100 μg/L with almost 40% of the collected samples exceeding the WHO defined limit of 10 μg/L for drinking water. 70 % of the groundwater samples were found to have very high Fe concentrations exceeding the WHO guideline of 0.3 mg/l in drinking water. Mn concentrations in the groundwater samples were relatively low with only ~10 % of the samples exceeding the WHO defined limit for Mn (400 μg/L). The majority of the groundwater samples were found to be anoxic in nature showing low NO<sub>3</sub><sup>−</sup> & SO<sub>4</sub><sup>2-</sup> concentrations, high Fe & Mn and DOC concentrations, and negative Eh values.</p><p>Results from this study show that the reductive dissolution mechanism of iron oxyhydroxide is the dominant mechanism responsible for arsenic release in groundwater of the region, ruling out any role of sulfide oxidation and alkali desorption.</p><p> </p><p> </p>


2016 ◽  
Vol 19 (3) ◽  
Author(s):  
NASIR SUBRIYER

<p>The declining water quality in Sriwijaya University has been caused by the presence of heavy metal contents such as Iron (Fe) and Zinc (Zn) in the treatment and distribution of water. A simple method is proposed in this work to minimize the heavy metal content in water by using filtration technology. This research was carried out using ceramic filter made of 77.5% natural clay, 20% fly ash, and 2.5% iron powder. The results showed an increase in the quality of raw water that is in accordance with the requirement of drinking water standard. The rejection percentage of TDS, Iron (Fe) and Zinc (Zn) content in feed water tended to be high and met the regulation number 492/MENKES/PER/IV/2010 for standards of drinking water in Indonesia.</p>


2020 ◽  
Author(s):  
Francis Hamwiinga ◽  
Chisala D. Meki ◽  
Patricia Mubita ◽  
Hikabasa Halwiindi

Abstract Background: One of the factors impeding access to safe water is water pollution. Of particular concern is heavy metal contamination of water bodies. This study was aimed at determining the levels of heavy metals in drinking water sources of Chingola District of Zambia. Methods: A cross sectional study was employed. A total of 60 water samples were collected. Thirsty (30) samples were collected in the dry season in the month of October 2016 and another 30 in the wet season in the months of February and March, 2017. For each season 10 water samples were collected from each of the three water sources. i.e. Tap water, Urban ground water sources and Rural ground water sources. Heavy metal analysis was done using Atomic Absorption Spectrophotometer (AAS).Results: This study revealed that the concentrations of Iron, Manganese, Lead, Nickel and Arsenic were beyond maximum permissible levels in various water sources. Combined averages for both dry and wet seasons were as follows: Iron: 2.3, Copper: 0.63, Cobalt: 0.02, Manganese: 0.36, Lead: 0.04, Zinc:3.2, Nickel: 0.03, Arsenic: 0.05. Chromium and Cadmium were below detection limit in all water samples. The median concentrations of iron, arsenic, copper, manganese in drinking water from the Tap, rural and urban ground water sources were different, and this difference was statistically significant (p<0.05). The median concentrations of arsenic, nickel, manganese and cobalt were different between dry and wet season, and this difference was statistically significant (p<0.05).Conclusions: Sources of heavy metals in water seems to be both natural and from human activities. The concentration of heavy metals in different water sources in this study was found to be above the recommended levels. This calls for improvement in water monitoring to protect the health of the public. Therefore, there is need for continuous monitoring of heavy metals in drinking water sources by regulatory authorities.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hawraz Sami Khalid ◽  
Hoshyar Saadi Ali ◽  
Dhary Almashhadany

The present study was conducted to evaluate the quality of drinking water in randomly selected schools in Erbil city, Kurdistan Region, Iraq. The water quality indices such as the Heavy metal Pollution Index (HPI) and Heavy metal Evaluation Index (HEI) were applied to characterize water quality. Eighteen schools were incorporated and sampled for their water storage tanks available to students. Water samples and sediment samples from tanks floor were analyzed by Inductively Coupled Plasma Optical Emission Spectrometer for the determination of twenty-two metal elements. In drinking water samples, all detected metals did not exceed the permissible limits of the World Health Organization. The results of this study showed that the average values of HPI and HEI for As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn were 54.442 and 0.221, respectively. According to data of the water quality indices, the schools drinking water quality are good and suitable for drinking in terms of heavy metals. However, sediments samples contained high concentrations of all elements including the toxic heavy metals (As, Cd, Cr, and Pb). Re-suspension of sediments into water column after refilling storage tanks can pose a serious threat to students drinking water from such vessels. It is therefore recommended that proper storage tanks are provided to the schools accompanied by continuous sanitation and hygiene practice to mitigate the corrosion of tanks to avoid health risks of toxic metal


2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Manutha Appa Rwoo ◽  
Hafizan Juahir ◽  
Nor Malisa Roslan ◽  
Mohd Ekhwan Toriman ◽  
Azizah Endut ◽  
...  

This case study characterizes the drinking water quality by using the multivariate technique. The spatial variation of the physico-chemical and heavy metals parameters toxicity with the drinking water quality based on 28 water treatment plants in Selangor, Malaysia from 2009 to 2012 was evaluated. The objectives of this study are to analyze the physio-chemical activities and heavy metals activities in the collected drinking water samples from the treatment plants, and to detect the source of pollution for the most revealing parameters. The discriminant analysis (DA) and the principal component analysis (PCA) are the chemometric techniques used to investigate the spatial variation of the most significant physico-chemical and heavy metal parameters of the drinking water samples. The classification matrix accuracy for standard mode of DA, forward stepwise and backward stepwise for the physico-chemical and heavy metal parameters are excellent. PCA highlighted 13 significant parameters out of 18 physico-chemical water quality parameters and 14 significant parameters out of 16 heavy metal parameters. PCA was carried out to identify the origin and source of pollution of each water quality parameters. For that reason, this study proves that chemometric method is the principle way to explain the characteristic of the drinking water quality.


Sign in / Sign up

Export Citation Format

Share Document