Human plasma stability during handling and storage: impact on NMR metabolomics

The Analyst ◽  
2014 ◽  
Vol 139 (5) ◽  
pp. 1168-1177 ◽  
Author(s):  
Joana Pinto ◽  
M. Rosário M. Domingues ◽  
Eulália Galhano ◽  
Cristina Pita ◽  
Maria do Céu Almeida ◽  
...  

The stability of human plasma composition was investigated by NMR, considering different collection tubes, time at room temperature (RT), short- and long-term storage conditions and up to 5 consecutive freeze–thaw cycles.

2018 ◽  
Vol 29 (1) ◽  
pp. 94-111 ◽  
Author(s):  
Tomás Barranco ◽  
Asta Tvarijonaviciute ◽  
Damián Escribano ◽  
Fernando Tecles ◽  
José J Cerón ◽  
...  

Introduction: In this report, we aimed to examine the stability of various analytes in saliva under different storage conditions. Materials and methods: Alpha-amylase (AMY), cholinesterase (CHE), lipase (Lip), total esterase (TEA), creatine kinase (CK), aspartate aminotransferase (AST), lactate dehydrogenase (LD), lactate (Lact), adenosine deaminase (ADA), Trolox equivalent antioxidant capacity (TEAC), ferric reducing ability (FRAS), cupric reducing antioxidant capacity (CUPRAC), uric acid (UA), catalase (CAT), advanced oxidation protein products (AOPP) and hydrogen peroxide (H2O2) were colorimetrically measured in saliva obtained by passive drool from 12 healthy voluntary donors at baseline and after 3, 6, 24, 72 hours, 7 and 14 days at room temperature (RT) and 4 ºC, and after 14 days, 1, 3 and 6 months at – 20 ºC and – 80 ºC. Results: At RT, changes appeared at 6 hours for TEA and H2O2; 24 hours for Lip, CK, ADA and CUPRAC; and 72 hours for LD, Lact, FRAS, UA and AOPP. At 4 ºC changes were observed after 6 hours for TEA and H2O2; 24 hours for Lip and CUPRAC; 72 hours for CK; and 7 days for LD, FRAS and UA. At – 20 ºC changes appeared after 14 days for AST, Lip, CK and LD; and 3 months for TEA and H2O2. At – 80 ºC observed changes were after 3 months for TEA and H2O2. Conclusions: In short-term storage, the analytes were more stable at 4 ºC than at room temperature, whereas in long-term storage they were more stable at - 80 ºC than at – 20 ºC.


2019 ◽  
Vol 9 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Ming-Jang Chiu ◽  
Lih-Fen Lue ◽  
Marwan N. Sabbagh ◽  
Ta-Fu Chen ◽  
H.H. Chen ◽  
...  

Background: The stability of Alzheimer’s disease (AD) biomarkers in plasma, measured by immunomagnetic reduction (IMR) after long-term storage at –80°C, has not been established before. Method: Ninety-nine human plasma samples from 53 normal controls (NCs), 5 patients with amnestic mild cognitive impairment (aMCI), and 41 AD patients were collected. Each plasma sample was aliquoted and stored as single-use aliquots at –80°C. The baseline measurements for Aβ1–40, Aβ1–42, and total Tau protein (T-Tau) concentrations for each sample were done within 3 months of blood draw by IMR. They are referred to as baseline concentrations. A separate aliquot from each sample was assayed with IMR to assess the stability of the measured analytes during storage at –80°C between 1.1 and 5.4 years. This is referred to as a repeated result. Results: IMR shows that plasma levels of Aβ1–40 and Aβ1–42 exhibit stability over 5-year storage at –80°C and that plasma levels of T-Tau are less stable (approximately 1.5 years). Conclusion: Although the measured concentrations of T-Tau in human plasma may alter during storage, the diagnostic utility of the results are only slightly affected when the product of Aβ1–42 and T-Tau concentrations are used. The results show that the overall agreement between baseline and repeated measurements in the ability of discriminating NCs from aMCI/AD patients is higher than 80%.


2010 ◽  
Vol 33 (1) ◽  
pp. 1-20 ◽  
Author(s):  
FILIPE J.P. SILVA ◽  
MARIA HELENA GOMES ◽  
FERNANDA FIDALGO ◽  
JOSÉ A. RODRIGUES ◽  
DOMINGOS P.F. ALMEIDA

2021 ◽  
pp. 1-12
Author(s):  
Hiaki Sato ◽  
Yoshiaki Norimatsu ◽  
Satoshi Irino ◽  
Takeshi Nishikawa

<b><i>Introduction/Objective:</i></b> Liquid-based cytology (LBC) is advantageous as multiple stained specimens can be prepared and used for additional assays such as immunocytochemical and molecular-pathological investigations. Two types of preservative-fixative solutions (fixatives) are used for nongynecologic specimens used in the BD SurePath-LBC (SP-LBC) method, and their components vary. However, few studies have evaluated the differences in antigen-retaining ability between these fixatives. Therefore, we investigated and compared the antigen-retaining ability of the fixatives in immunocytochemical staining (ICC) under long-term storage conditions. <b><i>Materials and Methods:</i></b> Sediments of cultured RAJI cells (derived from Burkitt’s lymphoma) were added to each fixative (red and blue) and stored at room temperature for a specified period (1 h; 1 week; and 1, 3, and 6 months). The specimens were then prepared using the SP-LBC method and subjected to ICC. Positivity rate was calculated using the specimens fixed at room temperature for 1 h as a control. Antibodies against Ki67 expressed in the nucleus and against CD20 and leukocyte common antigen (LCA) expressed on the cell membrane were used. <b><i>Results:</i></b> For CD20 and LCA, the positivity rate increased with time in the red fixative compared with that in the control. In the blue fixative, the positivity rate was highest at 1 h and was maintained at a high level throughout the storage period. In contrast, the Ki67 positivity rate was highest at 1 h in both red and blue fixatives and markedly decreased with time. Therefore, although refrigerated (8°C) storage was used, no improvement was noted. <b><i>Conclusions:</i></b> Long-term storage is possible for cell membrane antigens at room temperature; however, it is unsuitable for intranuclear antigens. Therefore, we conclude that suitable fixative type and storage temperature differ based on antigen location. Further investigation is warranted.


1993 ◽  
Vol 17 (4) ◽  
pp. 174-179 ◽  
Author(s):  
James P. Barnett ◽  
John P. Jones

Abstract Although longleaf pine (Pinus palustris Mill.) seeds are considered the most susceptible of the southern pines to damage during collection, processing, and storage, results of these studies show that high seed quality can be assured for periods up to 20 yr through proper handling and storing techniques. Recommendations for long-term storage include drying seeds to moisture contents of 10% or less and storing at subfreezing temperatures, preferably near 0°F. Reevaluation of stratification treatments applied under operational conditions indicates that the soaking in water that is necessary for seed imbibition reduces total germination in an amount proportional to the length of the soak. Stratification is not recommended except under very controlled conditions. South. J. Appl. For. 17(4):174-179.


2012 ◽  
Vol 32 (3) ◽  
pp. 573-578 ◽  
Author(s):  
Bruna Arruda ◽  
Altamir Frederico Guidolin ◽  
Jefferson Luís Meirelles Coimbra ◽  
Jaqueline Battilana

The objectives of this study were to understand how genotype, storage time, and storage conditions affect cooking time of beans and to indicate storage techniques that do not affect the cooking time. The grains were subjected to five different storage periods and six different storage conditions. The cooking time was estimated using the Mattson Cooker. The data were subjected to analysis of variance and a subsequent adjustment of simple linear regression for deployment of the interactions between the factors. Contrasts were used to determine the best levels of the factor storage condition. Genotype did not impact cooking time when the storage time and storage conditions were considered. Time and storage conditions affect the cooking time of beans in a dependent manner, but time of storage had the biggest influence. The best conditions for long-term storage of beans ensuring a smaller increase in cooking time is plastic storage at low temperatures. Thus, plastic freezer storage is a practical alternative for consumers.


Author(s):  
B A Middleton ◽  
L M Morgan ◽  
G W Aherne ◽  
V Marks

The performance in radioimmunoassay of four antisera after storage at temperatures ranging from −40°C to room temperature, in three physical states (frozen, liquid or freeze dried) was investigated over a 3-year period. No deterioration in antiserum performance in terms of precision and accuracy of quality control serum measurement or recovery of ligand was apparent under any of the storage conditions studied. Some lowering of titre became apparent in two of the antisera over the study period. Deterioration was most marked when antiserum was stored lyophilised at room temperature. Storage of antiserum frozen confers no advantage over storage at 4°C provided precautions are taken to minimise bacterial contamination when storing antiserum in liquid form.


Biology ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 276
Author(s):  
Lorena Padilla ◽  
Isabel Barranco ◽  
Inmaculada Parrilla ◽  
Xiomara Lucas ◽  
Heriberto Rodriguez-Martinez ◽  
...  

Sample handling and storing are critical steps for the reliable measurement of circulating biomolecules in biological fluids. This study evaluates how cytokine measurements in pig seminal plasma (SP) vary depending on semen handling and SP storage. Thirteen cytokines (GM-CSF, IFNγ, IL-1α, IL-1β, IL-1ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18 and TNFα) were measured using Luminex xMAP® technology in individual seminal plasma (SP) samples (n = 62) from healthy breeding boars. Three separate experiments explored the delay (2 h and 24 h) in SP collection after ejaculation (Experiment 1) and SP storage, either short-term (5 °C, −20 °C and −80 °C for 72 h, Experiment 2) or long-term (at −20 °C and −80 °C for two months, Experiment 3), before analysis. Levels in fresh SP-samples were used as baseline control values. Delays in SP harvesting of up to 24 h did not substantially impact SP cytokine measurements. Some cytokines showed instability in stored SP samples, mainly in long-term storage. Ideally, cytokines in pig SP should be measured in fresh samples harvested within 24 h after ejaculation. If storage of SP is imperative, storage conditions should be adjusted for each cytokine.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5178
Author(s):  
Qiuxia Han ◽  
Songyan Li ◽  
Bo Fu ◽  
Dongwei Liu ◽  
Maoqing Wu ◽  
...  

BackgroundThe importance of circulating antibodies as biomarkers of kidney disease has recently been recognized. However, no study has systematically described the methodology of sample preparation and storage regarding antibodies as biomarkers of kidney disease. It remains unknown whether repetitive freeze-thaw cycles, physical disturbances, storage at different temperatures or for different periods of time, or haemolytic or turbid serum samples affect antibody measurements. The aim of this study was to investigate the stabilities of antibodies associated with kidney disease in serum samples under various relevant clinical and research conditions.MethodsWe stored serum samples in the following different conditions: repetitive freeze-thaw cycles (1, 6 or 12 times), long-term storage (7 or 12 months at −80 °C), physical disturbance (1 or 8 h), and storage at 4 °C (1, 3 or 6 weeks) and room temperature (1 or 7 days). The stabilities of the anti-phospholipase A2 receptor (anti-PLA2R), anti-glomerular basement membrane, anti-myeloperoxidase and anti-proteinase 3 antibodies were evaluated with enzyme-linked immunosorbent assays (ELISA).ResultsWe found that repetitive freeze-thaw cycles did not have a significant effect on the stabilities of the abovementioned antibodies in clear serum samples. The ELISA readings of haemolytic and turbid serum samples tended to increase and decrease, respectively. Neither long-term storage at −80 °C nor physical disturbance had a significant effect on anti-PLA2R antibody stability in sealed serum samples. The concentrations of most of these antibodies increased in unsealed serum samples that were stored at 4 °C for more than 6 weeks or at room temperature for more than 7 days.DiscussionOur findings revealed that the abovementioned circulating antibodies that are used as biomarkers for kidney disease had stable physicochemical properties, structures and immunoreactivities such that they were not influenced by repetitive freeze-thaw cycles, physical disturbances or long-term storage at −80 °C. However, the ELISA readings tended to change for haemolytic, turbid and unsealed serum samples.


Sign in / Sign up

Export Citation Format

Share Document