Fabrication of nickel-foam-supported layered zinc–cobalt hydroxide nanoflakes for high electrochemical performance in supercapacitors

2014 ◽  
Vol 50 (76) ◽  
pp. 11188-11191 ◽  
Author(s):  
Peng Yuan ◽  
Ning Zhang ◽  
Dan Zhang ◽  
Tao Liu ◽  
Limiao Chen ◽  
...  

Nickel foam supported Zn–Co hydroxide nanoflakes were fabricated by a facile solvothermal method, which exhibited excellent specific capacitance and remarkable cycling stability as electrode materials in supercapacitors.

2020 ◽  
Vol 13 (02) ◽  
pp. 2051007
Author(s):  
Jie Dong ◽  
Qinghao Yang ◽  
Qiuli Zhao ◽  
Zhenzhong Hou ◽  
Yue Zhou ◽  
...  

Electrode materials with a high specific capacitance, outstanding reversibility and excellent cycle stability are constantly pursued for supercapacitors. In this paper, we present an approach to improve the electrochemical performance by combining the advantages of both inorganic and organic. Ni-MnO2/PANi-co-PPy composites are synthesized, with the copolymer of aniline/pyrrole being coated on the surface of Ni-doped manganese dioxide nanospheres. The inorganic–organic composite enables a substantial increase in its specific capacitance and cycle stability. When the mass ratio of Ni-MnO2 to aniline and pyrrole mixed monomer is 1:5, the composite delivers high specific capacitance of 445.49[Formula: see text]F/g at a scan rate of 2[Formula: see text]mV/s and excellent cycle stability of 61.65% retention after 5000 cycles. The results indicate that the Ni-MnO2/PANi-co-PPy composites are promising electrode materials for future supercapacitors application.


2021 ◽  
Vol 5 (5) ◽  
pp. 129
Author(s):  
Yapeng Wang ◽  
Yanxiang Wang ◽  
Chengjuan Wang ◽  
Yongbo Wang

As one of the most outstanding high-efficiency and environmentally friendly energy storage devices, the supercapacitor has received extensive attention across the world. As a member of transition metal oxides widely used in electrode materials, manganese dioxide (MnO2) has a huge development potential due to its excellent theoretical capacitance value and large electrochemical window. In this paper, MnO2 was prepared at different temperatures by a liquid phase precipitation method, and polyaniline/manganese dioxide (PANI/MnO2) composite materials were further prepared in a MnO2 suspension. MnO2 and PANI/MnO2 synthesized at a temperature of 40 °C exhibit the best electrochemical performance. The specific capacitance of the sample MnO2-40 is 254.9 F/g at a scanning speed of 5 mV/s and the specific capacitance is 241.6 F/g at a current density of 1 A/g. The specific capacitance value of the sample PANI/MnO2-40 is 323.7 F/g at a scanning speed of 5 mV/s, and the specific capacitance is 291.7 F/g at a current density of 1 A/g, and both of them are higher than the specific capacitance value of MnO2. This is because the δ-MnO2 synthesized at 40 °C has a layered structure, which has a large specific surface area and can accommodate enough electrolyte ions to participate the electrochemical reaction, thus providing sufficient specific capacitance.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2015 ◽  
Vol 44 (48) ◽  
pp. 21131-21140 ◽  
Author(s):  
Lei An ◽  
Wenyao Li ◽  
Yunjiu Cao ◽  
Kaibing Xu ◽  
Rujia Zou ◽  
...  

The hierarchical heterostructures of a NiO@MMoO4 (M = Co, Ni) nanosheet array electrode demonstrated remarkable electrochemical performance with a high specific capacitance and predominant cycling stability.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950042 ◽  
Author(s):  
Yunfeng Wang ◽  
Honghui Jiang ◽  
Shewen Ye ◽  
Jiaming Zhou ◽  
Jiahao Chen ◽  
...  

As the low-cost, natural multi-component for elemental doping and environment-friendly characteristics, biomass-derived porous carbon for energy storage attracts intense attention. Herein, walnut shells-based porous carbon has been obtained through carbonization, hydrothermal and activation treatment. The corresponding porous carbon owns superior electrochemical performances with specific capacitance reaching up to 462[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text], and shows excellent cycling stability (5000 cycles, [Formula: see text]94.2% of capacitance retention at 10[Formula: see text]A[Formula: see text]g[Formula: see text]). Moreover, the symmetry supercapacitor achieves high specific capacitance (197[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text]), relevant electrochemical cycling stability (5000 cycles, 89.2% of capacitance retention at 5[Formula: see text]A[Formula: see text]g[Formula: see text]) and high power/energy density (42.8[Formula: see text]W[Formula: see text]h[Formula: see text]kg[Formula: see text] at 1249[Formula: see text]W[Formula: see text]kg[Formula: see text]). Therefore, the facile synthesis approach and superb electrochemical performance ensure that the walnut shells-derived porous carbon is a promising electrode material candidate for supercapacitors.


2019 ◽  
Vol 48 (28) ◽  
pp. 10652-10660 ◽  
Author(s):  
Tarugu Anitha ◽  
Araveeti Eswar Reddy ◽  
Yedluri Anil Kumar ◽  
Young-Rae Cho ◽  
Hee-Je Kim

A bunch of PbMoO4/CdMoO4 nanocube-like structures exhibit superior specific capacitance and cycling stability to PbMoO4 and CdMoO4 electrodes.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1308 ◽  
Author(s):  
Anil Yedluri ◽  
Eswar Araveeti ◽  
Hee-Je Kim

NiCo2O4 nanoleaf arrays (NCO NLAs) and NiCo2O4/NiCO2O4 nanofile arrays (NCO/NCO NFAs) material was fabricated on flexible nickel foam (NF) using a facile hydrothermal approach. The electrochemical performance, including the specific capacitance, charge/discharge cycles, and lifecycle of the material after the hydrothermal treatment, was assessed. The morphological and structural behaviors of the NF@NCO NLAs and NF@NCO/NCO NFAs electrodes were analyzed using a range of analysis techniques. The as-obtained nanocomposite of the NF@NCO/NCO NFAs material delivered outstanding electrochemical performance, including an ultrahigh specific capacitance (Cs) of 2312 F g−1 at a current density of 2 mA cm−2, along with excellent cycling stability (98.7% capacitance retention after 5000 cycles at 5 mA cm−2). These values were higher than those of NF@NCO NLAs (Cs of 1950 F g−1 and 96.3% retention). The enhanced specific capacitance was attributed to the large electrochemical surface area, which allows for higher electrical conductivity and rapid transport between the electrons and ions as well as a much lower charge-transfer resistance and superior rate capability. These results clearly show that a combination of two types of binary metal oxides could be favorable for improving electrochemical performance and is expected to play a major role in the future development of nanofile-like composites (NF@NCO/NCO NFAs) for supercapacitor applications.


CrystEngComm ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1602-1609 ◽  
Author(s):  
Pan Yang ◽  
Chuan Jing ◽  
Jing Cheng Liu ◽  
Ke Chen ◽  
Yu Xin Zhang

The application of NiCo-LDHs as electrode materials for supercapacitors has attracted widespread attention.


2016 ◽  
Vol 4 (27) ◽  
pp. 10414-10418 ◽  
Author(s):  
Ying Ma ◽  
Yulong Jia ◽  
Lina Wang ◽  
Min Yang ◽  
Yingpu Bi ◽  
...  

Three-dimensional MoO2–G flower-like nanostructures were synthesized through a facile hydrothermal reaction and showed significantly improved specific capacitance, good rate capability and cycling stability.


Sign in / Sign up

Export Citation Format

Share Document