In vitro and in vivo cytocompatibility of electrospun nanofiber scaffolds for tissue engineering applications

RSC Advances ◽  
2014 ◽  
Vol 4 (60) ◽  
pp. 31618-31642 ◽  
Author(s):  
N. Goonoo ◽  
A. Bhaw-Luximon ◽  
D. Jhurry

An electrospun polymeric-based nanofibrous scaffold mimicking the extracellular matrix and serving as a temporary support for cell growth, adhesion, migration and proliferation.

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohan Prasath Mani ◽  
Madeeha Sadia ◽  
Saravana Kumar Jaganathan ◽  
Ahmad Zahran Khudzari ◽  
Eko Supriyanto ◽  
...  

Abstract In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.


2020 ◽  
Vol 91 ◽  
pp. 106698 ◽  
Author(s):  
Zhina Hadisi ◽  
Hamid Reza Bakhsheshi-Rad ◽  
Tavia Walsh ◽  
Mohammad Mehdi Dehghan ◽  
Saeed Farzad-Mohajeri ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


Author(s):  
Kivilcim Buyukhatipoglu ◽  
Robert Chang ◽  
Wei Sun ◽  
Alisa Morss Clyne

Tissue engineering may require precise patterning of cells and bioactive components to recreate the complex, 3D architecture of native tissue. However, it is difficult to image and track cells and bioactive factors once they are incorporated into the tissue engineered construct. These bioactive factors and cells may also need to be moved during tissue growth in vitro or after implantation in vivo to achieve the desired tissue properties, or they may need to be removed entirely prior to implantation for biosafety concerns.


2015 ◽  
Vol 3 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Linhao Li ◽  
Yuna Qian ◽  
Chongwen Lin ◽  
Haibin Li ◽  
Chao Jiang ◽  
...  

Silk middle gland extracted sericin protein based electrospun nanofibrous scaffolds with excellent biocompatibility have been developed for tissue engineering applications.


2010 ◽  
Vol 88 (9) ◽  
pp. 855-873 ◽  
Author(s):  
Divya Pankajakshan ◽  
Devendra K. Agrawal

Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.


2010 ◽  
Vol 16 (1) ◽  
pp. 343-353 ◽  
Author(s):  
João T. Oliveira ◽  
Tírcia C. Santos ◽  
Luís Martins ◽  
Ricardo Picciochi ◽  
Alexandra P. Marques ◽  
...  

2013 ◽  
Vol 113 ◽  
pp. 25-29 ◽  
Author(s):  
Nurul Syuhada Ibrahim ◽  
Genasan Krishnamurithy ◽  
Hanumantha Rao Balaji Raghavendran ◽  
Subramaniam Puvaneswary ◽  
Ng Wuey Min ◽  
...  

2016 ◽  
Vol 4 (10) ◽  
pp. 1412-1416 ◽  
Author(s):  
Tihomir Pospišil ◽  
Lejla Ferhatović Hamzić ◽  
Lada Brkić Ahmed ◽  
Marija Lovrić ◽  
Srećko Gajović ◽  
...  

The supramolecular self-assembles of a simple tripeptide Ac-l-Phe-l-Phe-l-Ala-NH2form a hydrogel matrix which may serve as the cell growth medium.


Sign in / Sign up

Export Citation Format

Share Document