Are engineered nanomaterials superior adsorbents for removal and pre-concentration of heavy metal cations from water?

RSC Advances ◽  
2014 ◽  
Vol 4 (86) ◽  
pp. 46122-46125 ◽  
Author(s):  
Kun Yang ◽  
Wei Wei ◽  
Long Qi ◽  
WenHao Wu ◽  
QingFeng Jing ◽  
...  

We observed that the removal of metal ions with engineered nanomaterials could be largely attributed to precipitation by forming metal hydroxyl precipitates rather than adsorption, implying that ENMs cannot be superior adsorbents.

2020 ◽  
Vol 13 ◽  
Author(s):  
Rishabha Malviya ◽  
Pramod Sharma ◽  
Akanksha Sharma

: Manuscript discussed about the role of polysaccharides and their derivatives in the removal of metal ions from industrial waste water. Quick modernization and industrialization increases the amount of various heavy metal ions in the environment. They can possess various disease in humans and also causes drastic environmental hazards. In this review the recent advancement for the adsorption of heavy metal ions from waste water by using different methods has been studied. Various natural polymers and their derivatives are act as effective adsorbents for the removal of heavy metal ions from the waste water released from the industries and the treated water released into the environment can decreases the chances of diseases in humans and environmental hazards. From the literature surveys it was concluded that the removal of heavy metal ions from the industrial waste water was important to decrease the environmental pollution and also diseases caused by the heavy metal ions. Graft copolymers were acts as most efficient adsorbent for the removal of heavy metal ions and most of these followed the pseudo first order and pseudo second order model of kinetics.


2012 ◽  
Vol 12 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Susy Yunita Prabawati ◽  
Jumina Jumina ◽  
Sri Juari Santosa ◽  
Mustofa Mustofa ◽  
Keisuke Ohto

A research has been conducted to investigate the capability of a series of novel calix[6]arenes-based polymers: poly-monoallyloxycalix[6]arene (2a), poly-monoallyloxypenta-estercalix[6]arene (2b) and poly-monoallyloxypenta-acidcalix[6]arene (2c) for trapping of heavy metal cations such as Cd(II), Cu(II) and Cr(III). The existence of active hydroxy group (-OH) and with a tunnel-like structure of the polymers, caused the polymers can be used as adsorbents for heavy metals. The adsorption process was carried out in batch method in the variation of acidity (pH), contact time and initial concentration of metal ions. The results showed that the amount of adsorbed metal increased with the increasing of the pH of metal solution. For these three polymers, the amount of metal ions Cd(II), Cu(II) and Cr(III) adsorbed was optimum at pH 7, 6 and 5 respectively. The optimum contact time for Cd(II) and Cu(II) was 120 min, while that for Cr(III) was 60 min. Study of the adsorption kinetics showed that the adsorption of Cd(II), Cu(II) and Cr(III) using polymer 2a followed kinetics model of Ho. For adsorbent 2b and 2c, the adsorption kinetics of Cd(II) and Cr(III) also followed kinetics model of Ho while for the Cu(II) followed Lagergren kinetic models. Isothermal studies showed that the adsorption of metal ions on all adsorbents tend to follow the Langmuir isotherm. The adsorption energies of the three adsorbents were higher than 23 kJ/mole and polymer 2c has the largest adsorption capacity for Cr(III).


2014 ◽  
Vol 16 (4) ◽  
pp. 41-44
Author(s):  
Iwona Rypińska ◽  
Marta Biegańska

Abstract Salix americana willow bark is a waste arising in the process of wicker decortication that so far has not found any practical application. The bark can adsorb metal ions, because in its composition among others are phenolic groups which may be involved in the removal of metal ions from water solutions. The results of sorption of copper(II) and zinc(II) on modified willow bark of Salix americana were presented. The bark was modified with nitric and sulfuric acids at concentrations ranging from 5 to 15%. The best adsorption results were obtained using 15% nitric acid for modification. Adsorption of metal ions from aqueous solutions at concentrations raging from 20 to 100 mg/dm3 was studied. It was found that an increase in the initial concentration of copper(II) and zinc(II) resulted in an increase in their adsorption on the modified cortex.


2013 ◽  
Vol 664 ◽  
pp. 369-373 ◽  
Author(s):  
Ling Ling Shang ◽  
Ce Shi ◽  
Yong Li Zhang ◽  
Yong Min Liu

The removal of the metal ions in the ceramic printing wastewater was influenced by using, stirring and precipitating of the solution pH, coagulant PAC, coagulant aid PAM and heavy metal scavenger. This experiment investigated the removal effect of the metal ions in the wastewater under different conditions. Flame atomic absorption spectrometry was adopted for the determination of the concentration of metal ions in the wastewater. The studies have shown that alkalization, PAC coagulation treatment have a role in the removal of metal ions in the ceramic printing wastewater. And the chromium and iron removal rate can reached 74.0% and 61.6% respectively. Heavy metal scavenger also have a better role in the removal of metal ions. And the chromium and iron removal rates were 82.3% and 76.2% respectively without dosing PAC. The number of reaction cell has no significant effect on the removal of metal ions.


2019 ◽  
Vol 57 (1) ◽  
pp. 66-71
Author(s):  
Alsu S. Ibragimova ◽  
◽  
Alla Yu Krynitskaya ◽  
Elena V. Petukhova ◽  
Pavel P. Sukhanov ◽  
...  

The content of cadmium, mercury, zinc and cuprum ions in extracts of Eleutherococcus prickly root powder was determined by stripping voltammetry. The content of Zn2+ cations in the aqueous extracts of the plant adaptogen was below the detection limit for the analysis method used. The concentration of ions Cd2+, Pb2+ in aqueous extracts it was less than 0.0002 mg/kg. The amount of cuprum ions did not exceed 2.6 mg/kg. Consequently, the concentrations of heavy metal cations are below the MPC level (maximum permissible concentration), which allows us to speak about the toxicological safety of the plant material studied. Increasing the maceration temperature from 23 to 40 °C reduces the efficiency of the process. The possible causes of this phenomenon are discussed. The source of raw materials does not have a significant effect on the content of pollutants. For the extraction of plant materials, along with distilled water, tap water can be used, which in its performance meets the standards for the content of heavy metal ions in all areas of the city of Kazan. The maximum value of the total pollution indicator is 4.5 mg/l. It was found in tap water selected in the Vakhitovsky district of the city of Kazan. However the maximum lead content is characteristic of the water selected in the Soviet district of the city. Distillation of water is expected to reduce pollution by pollutants. However complete purification from heavy metal ions does not occur. The most intense distillation is the purification of water from cuprum ions. The minimum amount of pollutants is found in ethanolic extracts of Eleutherococcus root powder. It is obvious that ethanol, as an extractant of heavy metal cations, is less preferable than water.


2020 ◽  
Vol 5 (2) ◽  
pp. 94
Author(s):  
Susy Yunita Prabawati ◽  
Jumina Jumina ◽  
Sri Juari Santosa ◽  
Mustofa Mustofa

This research aims to examine the capability of poly-37,40-diallyl-38,39,41,42,-tetrahydroxy-calix[6]arenes as adsorbent for heavy metal cations such as Cd(II), Cr(III) and Cu(II). The adsorption process was carried out by batch method in the variation of acidity (pH), contact time and initial concentration of metal ions. The adsorption kinetics and adsorption isotherms were also studied. The results of this research showed that the amount of adsorbed metal increased with the increasing of the pH of metal solution. The amount of metal ions Cd(II) and Cr(III) adsorbed was optimum at pH 5, while for metal ion Cu(II) was optimum at pH 4. The optimum contact time for Cd(II), Cr(III) and Cu(II) was 60; 30; and 180 minutes, respectively. The study of adsorption kinetics showed that the adsorption of Cd (II), Cr (III) and Cu (II) metal ions using this adsorbent followed kinetics model of Ho. Isothermal studies showed that the adsorption of the three metal ions tends to follow the Langmuir isotherm. The adsorption capacities of Cd (II), Cr (III) and Cu (II) metal ions with poly-37,40-diallyl-38,39,41,42,-tetrahydroxycalix[6]arenes were 7.06; 14.72 and 38.45 µmol/g, respectively.  


2012 ◽  
Vol 65 (10) ◽  
pp. 1738-1744 ◽  
Author(s):  
Amir Hossein Matin ◽  
Shokooh Sadat Khaloo ◽  
Abbas Akbarzadeh ◽  
Mohammad Riahi

Rice husk (RH) is a very effective natural adsorbent for fast removal of heavy metal cations from water solutions. Application of RH for removal of some heavy metal ions, such as Ni, Zn, Mn, Co, Cu, Pb and Cd from water solutions has been studied and different maximum adsorption capacities and a variety of optimized conditions were reported in the literature. In this work, the efficiency of RH harvested from different climatic regions was studied. For this proposal, different RH samples were collected from three different climatic regions of Iran (nominated as RH1 to RH3); their removal efficiencies of heavy metal cations of Ni2+, Cu2+ and Cd2+ were investigated and compared. The adsorption data at optimum conditions could be assessed well by both Langmuir and Freundlich models. Statistical analysis of the results of adsorption isotherms showed that different RH samples have different efficiencies in uptake of these heavy metal ions. The RH samples were characterized using Fourier transform infrared spectroscopy and Boehm titration, which indicated that amounts of functional groups differed between RHs that are grown in different climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document