Hot-corrosion behavior of Ti3SiC2in a eutectic mixture of LiCl–KCl salts in air

RSC Advances ◽  
2015 ◽  
Vol 5 (28) ◽  
pp. 21629-21633
Author(s):  
Ning Wang ◽  
Changming Cheng ◽  
Jie Tian ◽  
Sheng Hu ◽  
Haibin Zhang ◽  
...  

Ti3SiC2exhibits excellent corrosion resistance at 550 °C and forms an oxide protective layer at 650 °C and 750 °C.

2013 ◽  
Vol 442 ◽  
pp. 64-69
Author(s):  
Feng Li ◽  
Jia Shun Lv ◽  
Hong Gang Yang ◽  
Fang Zhou ◽  
Leng Zhang ◽  
...  

Z11A3M, Z6A3M, Z1.6A1.6M, Z1A1M and Z1M coating samples were prepared in HDPS by traditional continuous hot dipping method. The microstructure, element distribution and phase was analyzed by SEM, EPMA and XRD. The corrosion resistance was checked in SST. The result was, MgZn2 and eutectic could be found in all ZAM coating. The ZAM coatings showed excellent corrosion resistance in SST than GI. The corrosion resistance was 4.1 to 11 times of GI. There was no strong relativity between alloy composition and corrosion resistance due to Mg enrichment on the surface of coating. Edge-unsealed ZAM samples showed good corrosion resistance than edge-sealed sample.


2017 ◽  
Vol 35 (6) ◽  
pp. 455-462 ◽  
Author(s):  
Bo Gao ◽  
Lei Wang ◽  
Yang Liu ◽  
Xiu Song ◽  
Shu-Yu Yang ◽  
...  

AbstractThe corrosion properties of γ′-strengthened Co-xNi-Al-W-Cr (where x=15, 20, 25, and 30 at.%) superalloys were investigated in the mixture of 75 wt.% Na2SO4+25 wt.% NaCl at 900°C. The results showed that the corrosion behavior is associated with both sulfuration and oxidation processes. It was demonstrated that increasing the addition of Ni effectively promoted the formation of continuous Al2O3 scales, so that the hot corrosion resistance could be improved. When Ni content is more than 20 at.%, a large amount of Ni3S2 precipitates during the corrosion process. Sulfuration can destroy the integrity of the corrosion layer and increase the activity of oxygen. In this way, the internal oxidation of the alloys becomes more serious. Therefore, it is recommended that the optimum Ni addition is about 20 at.% for new type Co-Ni-Al-W-Cr superalloys.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 3155-3160
Author(s):  
ZHIMING BAI ◽  
LE ZHOU ◽  
TIANQUAN LIANG ◽  
HONGBO GUO ◽  
SHENGKAI GONG

The bare superalloy DZ 125 alloy, the aluminide coated specimens and electron beam physical vapor deposited (EB-PVD) thermal barrier coating (TBC) consisting of yttria stabilizied zirconia (YSZ) topcoat and NiCoCrAlY bond coat specimens were exposed to atomized seawater and kerosene at 900°C and the cyclic hot-corrosion behaviors of the specimens were investigated. Disastrous spallation of the bare superalloy occurred within 50 h hot-corrosion. In contrast to this, after 100 h hot-corrosion, the average mass change for the aluminized and TBC coated specimens is 0.7 mg/cm2 and 0.63 mg/cm2, respectively, exhibiting excellent hot-corrosion resistance.


2017 ◽  
Vol 64 (5) ◽  
pp. 515-528 ◽  
Author(s):  
Amita Rani ◽  
Niraj Bala ◽  
C.M. Gupta

Purpose Hot corrosion is the major degradation mechanism of failure of boiler and gas turbine components. The present work aims to investigate the hot corrosion resistance of detonation gun sprayed (D-gun) Cr2O3-75 per cent Al2O3 ceramic coating on ASTM-SA210-A1 boiler steel. Design/methodology/approach The coating exhibits nearly uniform, adherent and dense microstructure with porosity less than 0.8 per cent. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of bare and coated boiler steel in molten salt environment (Na2SO4-60 per cent V2O5) at high temperature 900°C for 50 cycles. The corrosion products are analyzed by using X-ray diffraction, scanning electron microscopy (SEM) and field emission scanning electron microscope/energy-dispersive analysis (EDAX) to reveal their microstructural and compositional features for elucidating the corrosion mechanisms. Findings During investigations, it was found that the Cr2O3-75 per cent Al2O3 coating on Grade A-1 boiler steel is found to be very effective in decreasing the corrosion rate in the molten salt environment at 900°C. The coating has shown lesser weight gains along with better adhesiveness of the oxide scales with the substrate till the end of the experiment. Thus, coatings serve as an effective diffusion barrier to preclude the diffusion of oxygen from the environment into the substrate boiler steel. Research limitations/implications Therefore, it is concluded that the better hot corrosion resistance of the coating is due to the formation of desirable microstructural features such as very low porosity, uniform fine grains and the flat splat structures in the coating; as compared to the bare substrate under cyclic conditions. Practical implications This research is useful for coal-fired boilers and other power plant boilers. Social implications This research is useful for power generation plants. Originality/value There is no reported literature on hot corrosion behavior of Cr2O3-75 per cent Al2O3 coating deposited on the selected substrates by D-gun spray technique. The present work has been focused to study the influence of the Cr2O3-75 per cent Al2O3 coating developed with D-gun spraying technique on high temperature corrosion behavior of ASTM-SA210-A-1 boiler steel in an aggressive environment of Na2SO4-60 per cent V2O5 molten salt at 900°C under cyclic conditions.


2011 ◽  
Vol 391-392 ◽  
pp. 1263-1267
Author(s):  
Guang Yan Fu ◽  
Jing Yu Chen ◽  
Qun Liu ◽  
Yong Su

Three Fe-Y alloy coatings with differernt kinds of Y contents were prepared on stainless steel by magnetron sputtering. The hot corrosion behavior of sputtered alloy coatings with Na2SO4 deposits at 800 °C was investigated by discontinuous weigh measurement. Results show that the sputtered Fe-Y alloy coatings exhibit good adhesion with the matrix of stainless steel, and the hot corrosion kinetic curves of the specimens approximately follow the parabolic rate law. The Fe oxides are the main substances in the corrosion scale, and the hot corrosion rate of the three Fe-Y alloy coatings increases as the Y content increases. Therefore, the hot corrosion resistance of Fe-15Y alloy coating is better than that of Fe-20Y or Fe-30Y alloy coating.


1984 ◽  
Vol 39 ◽  
Author(s):  
P. Kumar

ABSTRACTNickel-based alloys with over 7 percent silicon have excellent corrosion resistance to sulfuric acid, oleum and sulfate-ion-containing environments. This alloy is characterized by the presence of intermetallic Ni3Si (beta) and Ni5Si2 (gamma) phases in Ni-Si solid solution (alpha) matrix. The corrosion resistance is provided by the coarse intermetallic phases. Size of intermetallic phases is dependent on the processing condition and the heat treatment. The corrosion resistance can be changed by heat treatment.Results of corrosion tests are explained in terms of microstructural features.


2006 ◽  
Vol 522-523 ◽  
pp. 385-392
Author(s):  
Yu Li ◽  
Kazumasa Nishio ◽  
Mitsuaki Katoh ◽  
Tomiko Yamaguchi ◽  
Shinji Okamine

The thermal sprayed coatings are widely used in waste incineration boilers and fossil fuel-fired boilers. However, the defects, such as porosity, cracks and unmelted particles, in these coatings are detrimental to corrosion performance. In this study, the nickel based self fluxing alloy coating was fused by YAG laser to improve hot corrosion resistance of the coating. Under appropriate laser parameters, the nonporous, crack-free coating was produced. Hot corrosion test, conducted in the presence of a mixed salt of Na2SO4/NaCl/KCl at 550Гshowed that the modified coating exhibited excellent corrosion resistance compared with the as sprayed and gas fused coatings.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


2013 ◽  
Vol 711 ◽  
pp. 128-133
Author(s):  
Chun Yu Xu ◽  
Dong Bok Lee

The T122 steel (ferritic Fe-Cr-W alloy) and 347HFG stainless steel (austenitic Fe-Cr-Ni alloy) were corroded in the Na2SO4salt at 800 and at 900 °C, and their hot corrosion behavior was studied. They displayed good corrosion resistance owing to the formation of the protective Fe3O4and (Fe0.6Cr0.4)2O3scales. These oxides effectively suppressed sulfidation by the Na2SO4salt. The oxide scales that formed were thin and loosely adherent. The displayed good corrosion resistance was mainly attributed to the large amount of Cr in the alloys.


Sign in / Sign up

Export Citation Format

Share Document