scholarly journals Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes

2015 ◽  
Vol 3 (10) ◽  
pp. 2319-2325 ◽  
Author(s):  
Sehee Ahn ◽  
Ayoung Choe ◽  
Jonghwa Park ◽  
Heesuk Kim ◽  
Jeong Gon Son ◽  
...  

Directed self-assembly of carbon nanotubes into 2D rhombic nanomesh films results in greatly lower sheet resistance, higher stretchability, and better mechanical durability than those of random carbon nanotube films.

2015 ◽  
Vol 778 ◽  
pp. 75-78
Author(s):  
Hai Yan Hao ◽  
Lei Dai ◽  
Zhe Li ◽  
Kam Hung Low

The effects of reducing the contact resistance of AgNW networks by using TiO2and PEDOT:PSS were compared. The AgNW+PEDOT:PSS TCE was able to give a lower sheet resistance of 30~60Ω/□, while the AgNW+TiO2gave a relatively higher, but still practical value of 85~125Ω/□. Then the AgNW+PEDOT:PSS TCE was further compared with the SWCNT+PEDOT:PSS TCE, and it was found the SWCNT+PEDOT:PSS TCE had a lower conductivity of 70~110Ω/□ but a superior long-term mechanical stability.


2011 ◽  
Vol 22 (18) ◽  
pp. 2155-2159 ◽  
Author(s):  
Y. Miao ◽  
L. Chen ◽  
Y. Lin ◽  
R. Sammynaiken ◽  
W. J. Zhang

The use of carbon nanotubes (CNTs) for construction of sensors is promising. This is due to some unique characteristics of CNTs. In recent years, strain sensors built from CNT composite films have been developed; however, their low piezoresistive sensitivity (gauge factor (GF)) in in-plane strain detection is a concern compared with other strain sensors. This article reports an experimental discovery of the superior piezoresistive response of a CNT film that is free of surfactants, known as the pure CNT film. The mechanism for the high GF with the pure CNT film strain sensors is also discussed.


2005 ◽  
Vol 250 (1-4) ◽  
pp. 9-13 ◽  
Author(s):  
L.M. Sheng ◽  
M. Liu ◽  
P. Liu ◽  
Y. Wei ◽  
L. Liu ◽  
...  

1991 ◽  
Vol 14 (3) ◽  
pp. 163-173 ◽  
Author(s):  
M. Prudenziati ◽  
F. Sirotti ◽  
M. Sacchi ◽  
B. Morten ◽  
A. Tombesi ◽  
...  

The size effect, namely the change of sheet resistance, Rsas a function of resistor length, has been investigated in layers whose conductive phase evolves from Pb-rich (Ru-deficient pyrochlores) to Pb2Ru2O6.5and finally to RuO2by increasing the firing temperature. It is found that Bi diffusion from the terminations is responsible for lower sheet resistance values in shorter resistors whatever the conductive phase is. On the contrary, Ag diffusion is responsible for lower sheet resistance values in shorter resistors only in the case of ruthenate conductive grains while the reverse is observed in RuO2-based layers. Size effect can be suppressed with Pt/Au-based terminations provided that no Bi is contained and with Au-metallorganic-based contact provided that the peak firing temperature is not too high.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103365-103372 ◽  
Author(s):  
Lei Liu ◽  
Dong Wang ◽  
Yuan Hu

Negative graphene oxide was combined with positive chitosan-modified multi-walled carbon nanotubes in aqueous solution and then thermally reduced to fabricate a multi-walled carbon nanotube/graphene (MWCNT/G) hybrid material.


RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3453-3461 ◽  
Author(s):  
Albert Lin ◽  
Chien-Chih Yang ◽  
Parag Parashar ◽  
Chien-Yung Lin ◽  
Ding Rung Jian ◽  
...  

Electrophoretic-deposited carbon nanotubes (EPD-CNTs) possess decent optical properties and low-cost processing and thus can be used as an ideal black body with compact dimension.


2003 ◽  
Vol 772 ◽  
Author(s):  
Emmanuel Valentin ◽  
Stephane Auvray ◽  
Arianna Filoramo ◽  
Aline Ribayrol ◽  
Marcelo Goffman ◽  
...  

AbstractWe describe the realization of high quality self-assembled single wall carbon nanotube field effect transistors (CNTFET). A method using self-assembled monolayers (SAMs) is used to obtain high yield selective deposition placement of single wall carbon nanotubes (SWNTs) on predefined regions of a substrate. This is achieved with individual or small bundles of SWNTs and with high densities suitable for fabrication of integrated devices. We show that such positioned SWNTs can be electrically contacted to realize high performance transistors, which very well compare with state-of-the-art CNTFETs. We therefore validate the self-assembly approach to reliably fabricate efficient carbon nanotube based devices.


2005 ◽  
Vol 475-479 ◽  
pp. 3587-3590
Author(s):  
K.J. Liao ◽  
W.L. Wang ◽  
Y.T. Wang ◽  
J.W. Lu ◽  
X.L. Sun

The field electron emission from carbon nanotube films on polycrystalline diamond films was investigated. The carbon nanotubes and diamond films on Si substrates were prepared by a conventional hot filament chemical vapour deposition. The films obtained were characterized by scanning electron microscopy and Raman spectroscopy. The field emission properties of the samples were measured in an ion-pumped vacuum chamber at a pressure of 10-6 Pa.. The experimental results showed that the field emission behaviours of carbon nanotubes/diomond films structure have greatly been improved as compared with carbon nanotubes and diamond films, respectively. A turn-on field of 1.0 V/µm and a maximum current of 500 µA at 1.5 V/µm were observed, which were lower than those of carbon nanotubes and polycrystalline diamond films, respectively. This improvement was attributed to the tip shape of sample surface, which provided an additional local increase in electric field at the tube ends.


Author(s):  
W. A. Heer ◽  
W. S. Bacsa ◽  
B. Doudin ◽  
L. Forro ◽  
D. Ugarte

Carbon ◽  
2013 ◽  
Vol 58 ◽  
pp. 226-231 ◽  
Author(s):  
T.J. Simmons ◽  
N. Maeda ◽  
J. Miao ◽  
M. Bravo-Sanchez ◽  
J.S. Dordick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document