Highly active and durable Pd/Fe2O3 catalysts for wet CO oxidation under ambient conditions

2016 ◽  
Vol 6 (11) ◽  
pp. 3918-3928 ◽  
Author(s):  
A. S. Ivanova ◽  
E. M. Slavinskaya ◽  
O. A. Stonkus ◽  
R. V. Gulyaev ◽  
T. S. Glazneva ◽  
...  

Pd/Fe2O3(FeOOH) catalysts were prepared in different ways: T – traditional incipient wetness impregnation (IWI) from a solution of Pd(NO3)2, D – modification of the support surface by dimethylformamide prior to IWI, and DF – variant D followed by treatment with a HCOONa.

2015 ◽  
Vol 39 (12) ◽  
pp. 9380-9388 ◽  
Author(s):  
Haifeng Gong ◽  
Junjiang Zhu ◽  
Kangle Lv ◽  
Ping Xiao ◽  
Yanxi Zhao

Co3O4 templated from mesoporous silica show stable and better activity for CO oxidation than that synthesized by the traditional sol–gel method.


2016 ◽  
Vol 70 (3) ◽  
Author(s):  
Xiao-Ling Yu ◽  
Yan-Nan Lu ◽  
Huan Huang ◽  
De-Zhi Yi ◽  
Li Shi ◽  
...  

AbstractA series of nickel-modified Y zeolites were prepared for the adsorption of dimethyl sulphide (DMS) in liquid hydrocarbon streams. The adsorption desulphurisation performance was investigated under ambient conditions of nickel-based adsorbents developed by the liquid-phase ion exchange (LPIE) method and the incipient wetness impregnation (IWI) method with and without the ultrasonic aid technique. It was found that the nickel-modified Y zeolite prepared by the IWI method with the ultrasonic aid technique with hydrogen reduction demonstrated a high sulphur capacity of 69.9 mg of S per g of sorbent at a break-through sulphur level of 10 μg g


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Michalis Konsolakis ◽  
Maria Lykaki

The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.


2014 ◽  
Vol 147 ◽  
pp. 132-143 ◽  
Author(s):  
R.V. Gulyaev ◽  
E.M. Slavinskaya ◽  
S.A. Novopashin ◽  
D.V. Smovzh ◽  
A.V. Zaikovskii ◽  
...  

2009 ◽  
Vol 114 (2) ◽  
pp. 793-798 ◽  
Author(s):  
Mingmei Han ◽  
Xiaojing Wang ◽  
Yuenian Shen ◽  
Changhe Tang ◽  
Guangshe Li ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13930-13940 ◽  
Author(s):  
Dattatray S. Dhawale ◽  
Gurudas P. Mane ◽  
Stalin Joseph ◽  
Siddulu N. Talapaneni ◽  
Chokkalingam Anand ◽  
...  

Nanoporous carbon (CMK-3-150) functionalized with different amounts of cobalt oxide (CoO) nanoparticles was synthesized by an incipient wetness impregnation technique for supercapacitor application.


2015 ◽  
Vol 18 (2) ◽  
pp. 187-196
Author(s):  
Tri Nguyen ◽  
Anh Cam Ha ◽  
Loc Cam Luu ◽  
Cuong Tien Hoang ◽  
Thi Thi Yen Trinh ◽  
...  

The optimal Pt-modified CuO supported on γ-Al2O3 and γ-Al2O3 + CeO2 catalysts have been prepared. Physico-chemical characteristics of catalysts were investigated and determined by the methods of N2 adsorption (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), and hydrogen pulse chemisorption (HPC). The characteristics of carbon monoxide (CO) adsorption on catalysts were defined by the method of infrared spectroscopy (IR) in the range of 4000 – 400 cm-1. The effect of the mixture of water vapour and SO2 on the activity of these catalysts for the CO oxidation was assessed. Reactions were conducted at 200oC and 350oC in the absence and presence of the mixture of water vapour (1.1 mol %) and SO2 (0.0625 mol %). Concentrations of O2 and CO in the gas mixture were 9.2 mol % and 0.5 mol %, respectively. The results showed that in the catalysts there exist highly active centers Cu1+ and Pt2+. On the catalysts the adsorption of CO on Cu2+, Pt2+, CeO2, and γ - Al2O3 centres was observed. Addition of CeO2 led to increase the reductivity, CO adsorption but decrease in specific surface area of catalyst. The result PtCu/CeAl catalyst shown higher active, but lower stability compared to PtCu/Al catalyst. The mixture of water vapour and SO2 showed the reversible poisoning toward the Pt-CuO catalysts at a temperature of 350oC, but irreversible at 200oC


2019 ◽  
Vol 19 (2) ◽  
pp. 319 ◽  
Author(s):  
Muhammad Al-Muttaqii ◽  
Firman Kurniawansyah ◽  
Danawati Hari Prajitno ◽  
Achmad Roesyadi

This present study was aimed to investigate the hydrocracking of coconut oil using Ni-Fe/HZSM-5 catalyst in a batch reactor at three reaction temperatures (350, 375, and 400 °C). The Ni-Fe/HZSM-5 catalyst was prepared by using incipient wetness impregnation. The Ni-Fe/HZSM-5 catalyst was characterized using XRD, BET, and SEM-EDX. From XRD results, the loading of Ni and Fe did not change the crystalline structure of HZSM-5 catalyst. The surface area of HZSM-5 was 425 m2/g and decreased after the addition of metals (Ni and Fe) into HZSM-5 support. These changes implied that Ni and Fe particles were successfully dispersed on the HZSM-5 surface and incorporated into HZSM-5 pore. The product of hydrocarbon biofuel was analyzed using GC-MS. The GC-MS results of hydrocarbon biofuel showed the highest compounds for n-paraffin and yield for gasoil was 39.24 and 18.4% at a temperature of 400 °C, respectively. The reaction temperature affected the yield and the composition of hydrocarbon biofuel. At this reaction temperature condition, decarboxylation and decarbonylation were favored; lead to the formation of n-alkanes with an odd number of carbon atoms chain length.


2020 ◽  
Vol 190 ◽  
pp. 105590 ◽  
Author(s):  
Lucy-Caterine Daza-Gómez ◽  
Víctor-Fabián Ruiz-Ruiz ◽  
J. Arturo Mendoza-Nieto ◽  
Heriberto Pfeiffer ◽  
David Díaz

Sign in / Sign up

Export Citation Format

Share Document