Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging

Nanoscale ◽  
2015 ◽  
Vol 7 (24) ◽  
pp. 10775-10780 ◽  
Author(s):  
Shuwei Hao ◽  
Liming Yang ◽  
Hailong Qiu ◽  
Rongwei Fan ◽  
Chunhui Yang ◽  
...  
2021 ◽  
Vol 20 ◽  
pp. 153303382110365
Author(s):  
Lin Qiu ◽  
Shuwen Zhou ◽  
Ying Li ◽  
Wen Rui ◽  
Pengfei Cui ◽  
...  

Bifunctional magnetic/fluorescent core-shell silica nanospheres (MNPs) encapsulated with the magnetic Fe3O4 core and a derivate of 8-amimoquinoline (N-(quinolin-8-yl)-2-(3-(triethoxysilyl) propylamino) acetamide) (QTEPA) into the shell were synthesized. These functional MNPs were prepared with a modified stöber method and the formed Fe3O4@SiO2-QTEPA core-shell nanocomposites are biocompatible, water-dispersible, and stable. These prepared nanoparticles were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), thermoelectric plasma Quad II inductively coupled plasma mass spectrometry (ICP-MS), superconducting quantum interference device (SQUID), TG/DTA thermal analyzer (TGA) and Fourier transform infrared spectroscopy (FTIR). Further application of the nanoparticles in detecting Zn2+ was confirmed by the fluorescence experiment: the nanosensor shows high selectivity and sensitivity to Zn2+ with a 22-fold fluorescence emission enhancement in the presence of 10 μM Zn2+. Moreover, the transverse relaxivity measurements show that the core-shell MNPs have T2 relaxivity (r2) of 155.05 mM−1 S−1 based on Fe concentration on the 3.0 T scanner, suggesting that the compound can be used as a negative contrast agent for MRI. Further in vivo experiments showed that these MNPs could be used as MRI contrast agent. Therefore, the new nanosensor provides the dual modality of magnetic resonance imaging and optical imaging.


2014 ◽  
Vol 26 (48) ◽  
pp. 8210-8216 ◽  
Author(s):  
Mei Chen ◽  
Shaoheng Tang ◽  
Zhide Guo ◽  
Xiaoyong Wang ◽  
Shiguang Mo ◽  
...  

2011 ◽  
Vol 21 (9) ◽  
pp. 2877 ◽  
Author(s):  
Shohei Taniguchi ◽  
Mark Green ◽  
Sarwat B. Rizvi ◽  
Alexander Seifalian

2006 ◽  
Vol 128 (8) ◽  
pp. 2526-2527 ◽  
Author(s):  
John P. Zimmer ◽  
Sang-Wook Kim ◽  
Shunsuke Ohnishi ◽  
Eichii Tanaka ◽  
John V. Frangioni ◽  
...  

Biomaterials ◽  
2018 ◽  
Vol 159 ◽  
pp. 82-90 ◽  
Author(s):  
Feiyi Wang ◽  
Ge Xu ◽  
Xianfeng Gu ◽  
Zhijun Wang ◽  
Zhiqiang Wang ◽  
...  

2018 ◽  
Vol 6 (19) ◽  
pp. 2993-2999 ◽  
Author(s):  
Ilaria Monaco ◽  
Paolo Armanetti ◽  
Erica Locatelli ◽  
Alessandra Flori ◽  
Mirko Maturi ◽  
...  

We report the synthesis of a resilient nanosystem (MnFe2O4@SiO2@GNRs@PMs) for magnetic–photoacoustic–optical triple-modality imaging.


Author(s):  
Didem Şen Karaman ◽  
Christa Kietz ◽  
Prakirth Govardhanam ◽  
Anna Slita ◽  
Alexandra Manea ◽  
...  

2020 ◽  
Vol 21 (19) ◽  
pp. 7031
Author(s):  
Zhuo-Hao Liu ◽  
Yin-Cheng Huang ◽  
Chang-Yi Kuo ◽  
Chao-Ying Kuo ◽  
Chieh-Yu Chin ◽  
...  

Spinal cord injury (SCI) is associated with disability and a drastic decrease in quality of life for affected individuals. Previous studies support the idea that docosahexaenoic acid (DHA)-based pharmacological approach is a promising therapeutic strategy for the management of acute SCI. We postulated that a nanostructured material for controlled delivery of DHA at the lesion site may be well suited for this purpose. Toward this end, we prepare drug-loaded fibrous mats made of core-shell nanofibers by electrospinning, which contained a polylactic acid (PLA) shell for encapsulation of DHA within the core, for delivery of DHA in situ. In vitro study confirmed sustained DHA release from PLA/DHA core-shell nanofiber membrane (CSNM) for up to 36 days, which could significantly increase neurite outgrowth from primary cortical neurons in 3 days. This is supported by the upregulation of brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) neural marker genes from qRT-PCR analysis. Most importantly, the sustained release of DHA could significantly increase the neurite outgrowth length from cortical neuron cells in 7 days when co-cultured with PLA/DHA CSNM, compared with cells cultured with 3 μM DHA. From in vivo study with a SCI model created in rats, implantation of PLA/DHA CSNM could significantly improve neurological functions revealed by behavior assessment in comparison with the control (no treatment) and the PLA CSNM groups. According to histological analysis, PLA/DHA CSNM also effectively reduced neuron loss and increased serotonergic nerve sprouting. Taken together, the PLA/DHA CSNM may provide a nanostructured drug delivery system for DHA and contribute to neuroprotection and promoting neuroplasticity change following SCI.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 6164-6175 ◽  
Author(s):  
Elena Navarro-Palomares ◽  
Paula González-Saiz ◽  
Carlos Renero-Lecuna ◽  
Rosa Martín-Rodríguez ◽  
Fernando Aguado ◽  
...  

Core–shell nanoparticles provide two fold functionality in nano medicine: reduction of nanotoxicity and improving as a tool for imaging and therapy.


Sign in / Sign up

Export Citation Format

Share Document