scholarly journals Enhancement of fluorescent properties of near-infrared dyes using clickable oligoglycerol dendrons

2015 ◽  
Vol 13 (16) ◽  
pp. 4727-4732 ◽  
Author(s):  
Orit Redy-Keisar ◽  
Katharina Huth ◽  
Uwe Vogel ◽  
Bernd Lepenies ◽  
Peter H. Seeberger ◽  
...  

Oligoglycerol dendrons effectively enhance the fluorescence properties of a cyanine NIR dye by increasing the solubility in water and the prevention of aggregate formation.

Author(s):  
Yuechan Cao ◽  
Zongyan Zhao ◽  
Zhaoyi Yin ◽  
Zhiguo Song ◽  
Dacheng Zhou ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Palaniyappan Nagarasu ◽  
Anu Kundu ◽  
Vijay Thiruvenkatam ◽  
Raghavaiah Pallepogu ◽  
Philip Philip Anthony ◽  
...  

A series of stimuli-responsive AIEgens of tetraphenylethyelene (TPE) fused Imidazole derivatives (1-7) were synthesized and explored their substituents controlled fluorescent properties in the solid state. The structure of the synthesized...


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Siying Pei ◽  
Yao Sun ◽  
Dongxu Fan ◽  
Shuhua Deng ◽  
Haoran Mei ◽  
...  

Abdominal aortic aneurysm is more stressful and has more complications in many diseases. During treatment and repair, arteriosclerosis, abdominal congestion deposition, and abdominal swelling cannot be eliminated. In this paper, we used the seed growth method to obtain gold nanoparticles (AuNPs) with good morphology and dispersion. The AuNPs of larger aspect ratio synthesized in this experiment moved their longitudinal plasmon resonance absorption peak to the near-infrared region, which provided suitable materials for subsequent experiments and laid the foundation for the photothermal therapy of tumors. Experiments show that near-infrared rays can penetrate into deep tissues to overcome the shortcomings that visible light cannot penetrate abdominal aorta well. AuNPs absorb near-infrared rays, thereby generating heat energy to achieve the purpose of treating tumors. In addition, AuNPs also have fluorescent properties, combined with other forms of imaging methods, to achieve the purpose of multimodal imaging, and improve the diagnostic accuracy of studying the protection mechanism of the nephroblastoma overexpressed (NOV or CCN3) gene.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Thomas Geiger ◽  
Iuliia Schoger ◽  
Daniel Rentsch ◽  
Anna Christina Véron ◽  
Frédéric Oswald ◽  
...  

Seven unsymmetrical heptamethine dyes with carboxylic acid functionality were synthesized and characterized. These near-infrared dyes exhibit outstanding photophysical properties depending on their heterocyclic moieties and molecular structure. As proof of principle, the dyes were used as photosensitizers in dye-sensitized solar cells. Using the most promising dye, an overall conversion efficiency of 1.22% and an almost colorless solar cell were achieved.


2019 ◽  
Vol 132 ◽  
pp. 27-33 ◽  
Author(s):  
Markus Riehl ◽  
Meike Harms ◽  
Benedikt Göttel ◽  
Holger Kubas ◽  
Dirk Schiroky ◽  
...  

Chemosensors ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 99
Author(s):  
Sarah N. Mobarez ◽  
Nongnoot Wongkaew ◽  
Marcel Simsek ◽  
Antje J. Baeumner ◽  
Axel Duerkop

Electrospun nanofibers (ENFs) are remarkable analytical tools for quantitative analysis since they are inexpensive, easily produced in uniform homogenous mats, and provide a high surface area-to-volume ratio. Taking advantage of these characteristics, a near-infrared (NIR)-dye was doped as chemosensor into ENFs of about 500 nm in diameter electrospun into 50 µm thick mats on indium tin oxide (ITO) supports. The mats were made of cellulose acetate (CA) and used as a sensor layer on optical dipsticks for the determination of biogenic amines (BAs) in food. The ENFs contained the chromogenic amine-reactive chameleon dye S0378 which is green and turns blue upon formation of a dye-BA conjugate. This SN1-reaction of the S0378 dye with various BAs was monitored by reflectance measurements at 635 nm where the intrinsic absorption of biological material is low. The difference of the reflectance before and after the reaction is proportional to BA levels from 0.04–1 mM. The LODs are in the range from 0.03–0.09 mM, concentrations that can induce food poisoning but are not recognized by the human nose. The calibration plots of histamine, putrescine, spermidine, and tyramine are very similar and suggesting the use of the dipsticks to monitor the total sample BA content. Furthermore, the dipsticks are selective to primary amines (both mono- and diamines) and show low interference towards most nucleophiles. A minute interference of proteins in real samples can be overcome by appropriate sample pretreatment. Hence, the ageing of seafood samples could be monitored via their total BA content which rose up to 21.7 ± 3.2 µmol/g over six days of storage. This demonstrates that optically doped NFs represent viable sensor and transducer materials for food analysis with dipsticks.


2018 ◽  
Vol 11 (7) ◽  
pp. 3987-4003 ◽  
Author(s):  
Tobias Könemann ◽  
Nicole J. Savage ◽  
J. Alex Huffman ◽  
Christopher Pöhlker

Abstract. Fluorescent dyed polystyrene latex spheres (PSLs) are commonly used for characterization and calibration of instruments detecting fluorescence signals from particles suspended in the air and other fluids. Instruments like the Ultraviolet Aerodynamic Particle Sizer (UV-APS) and the Waveband Integrated Bioaerosol Sensor (WIBS) are widely used for bioaerosol research, but these instruments present significant technical and physical challenges requiring careful characterization with standard particles. Many other research communities use flow cytometry and other instruments that interrogate fluorescence from individual particles, and these also frequently rely on fluorescent PSLs as standards. Nevertheless, information about physical properties of commercially available PSLs provided by each manufacturer is generally proprietary and rarely available, making their use in fluorescence validation and calibration very difficult. This technical note presents an overview of steady-state fluorescence properties of fluorescent and non-fluorescent PSLs, as well as of polystyrene-divinylbenzene (PS-DVB) particles, by using on- and offline spectroscopic techniques. We show that the “fluorescence landscape” of PSLs is more complex than the information typically provided by manufacturers may imply, especially revealing multimodal emission patterns. Furthermore, non-fluorescent PSLs also exhibit defined patterns of fluorescent emission originating from a mixture of polystyrene and detergents, which becomes a crucial point for fluorescence threshold calibrations and qualitative comparison between instruments. By comparing PSLs of different sizes, but doped with the same dye, changes in emission spectra from bulk solutions are not immediately obvious. On a single-particle scale, however, fluorescence intensity values increase with increasing particle size. No significant effect in the fluorescence signatures was detectable by comparing PSLs in dry vs. wet states, indicating that solvent water may only play a minor role as a fluorescence quencher. Because information provided by manufacturers of commercially available PSLs is generally very limited, we provide the steady-state excitation–emission matrices (EEMs) of PSLs as open-access data within the Supplement. Detergent and solvent effects are also discussed in order to provide information not available elsewhere to researchers in the bioaerosol and other research communities. These data are not meant to serve as a fundamental library of PSL properties because of the variability of fluorescent properties between batches and as a function of particle aging and agglomeration. The data presented, however, provide a summary of spectral features which are consistent across these widely used fluorescent standards. Using these concepts, further checks will likely be required by individual researchers using specific lots of standards.


Endoscopy ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 618-625 ◽  
Author(s):  
André Neves ◽  
Massimiliano Di Pietro ◽  
Maria O’Donovan ◽  
Dale Waterhouse ◽  
Sarah Bohndiek ◽  
...  

Abstract Background and study aims Endoscopic surveillance for Barrett’s esophagus (BE) is limited by long procedure times and sampling error. Near-infrared (NIR) fluorescence imaging minimizes tissue autofluorescence and optical scattering. We assessed the feasibility of a topically applied NIR dye-labeled lectin for the detection of early neoplasia in BE in an ex vivo setting. Methods Consecutive patients undergoing endoscopic mucosal resection (EMR) for BE-related early neoplasia were recruited. Freshly collected EMR specimens were sprayed at the bedside with fluorescent lectin and then imaged. Punch biopsies were collected from each EMR under NIR light guidance. We compared the fluorescence intensity from dysplastic and nondysplastic areas within EMRs and from punch biopsies with different histological grades. Results 29 EMR specimens were included from 17 patients. A significantly lower fluorescence was found for dysplastic regions across whole EMR specimens (P < 0.001). We found a 41 % reduction in the fluorescence of dysplastic compared to nondysplastic punch biopsies (P < 0.001), with a sensitivity and specificity for dysplasia detection of 80 % and 82.9 %, respectively. Conclusion Lectin-based NIR imaging can differentiate dysplastic from nondysplastic Barrett’s mucosa ex vivo.


2018 ◽  
Vol 16 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Steve S Cho ◽  
Ryan Zeh ◽  
John T Pierce ◽  
Jun Jeon ◽  
MacLean Nasrallah ◽  
...  

Abstract BACKGROUND Surgical resection is the primary treatment for nonfunctional (NF) pituitary adenomas, but gross-total resection is difficult to achieve in all cases. NF adenomas overexpress folate receptor alpha (FRα). OBJECTIVE To test the hypothesis that we could target FRα for highly sensitive and specific intraoperative detection of NF adenomas using near-infrared (NIR) imaging. METHODS Fourteen patients with NF pituitary adenoma were infused with the folate analog NIR dye OTL38 preoperatively. NIR fluorescence signal-to-background ratio (SBR) was recorded for each tumor during resection of the adenomas. Extent of surgery was not modified based on the presence or absence of fluorescence. Immunohistochemistry was performed to assess FRα expression in all specimens. Magnetic resonance imaging (MRI) was performed postoperatively to assess residual neoplasm. RESULTS Nine adenomas overexpressed FRα and fluoresced with a NIR SBR of 3.2 ± 0.52, whereas the 5 non-FRα-overexpressing adenomas fluoresced with an SBR of 1.5 ± 0.21. Linear regression demonstrated a significant correlation between intraoperative SBR and the FRα expression (P-value &lt; .001). Analysis of 14 margin samples revealed that the surgeon's impression of the tissue had 83% sensitivity, 100% specificity, 100% positive predictive value, and 89% negative predictive value, while NIR fluorescence had 100% for all values. NIR fluorescence accurately predicted postoperative MRI results in 78% of FRα-overexpressing patients. CONCLUSION Preoperative injection of folate-tagged NIR dye provides strong signal and visualization of NF pituitary adenomas. It is 100% sensitive and specific for detecting margin neoplasm and can predict postoperative MRI findings. Our results suggest that NIR fluorescence may be superior to white-light visualization alone and may improve resection rates in NF pituitary adenomas.


Sign in / Sign up

Export Citation Format

Share Document