A systematic review of the influence of skin pigmentation on changes in the concentrations of vitamin D and 25-hydroxyvitamin D in plasma/serum following experimental UV irradiation

2015 ◽  
Vol 14 (12) ◽  
pp. 2138-2146 ◽  
Author(s):  
Fan Xiang ◽  
Robyn Lucas ◽  
Frank de Gruijl ◽  
Mary Norval

Does skin colour influence the production of vitamin D metabolites following UV irradiation? The paper reviews the studies addressing this important question and discusses possible reasons for the contradictory results.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Youssra Dakroury ◽  
Alexandra E. Butler ◽  
Soha R. Dargham ◽  
Aishah Latif ◽  
Amal Robay ◽  
...  

Objective. Genetic studies have identified four Qatari genotypes: Q1 Arab, Bedouin; Q2 Asian/Persian; Q3 African; and a fourth admixed group not fitting into the previous 3 groups. This study was undertaken to determine if there was an increased risk of deficiency of vitamin D and its metabolites associated with differing genotypes, perhaps due to genetic differences in skin pigmentation. Methods. 398 Qatari subjects (220 type 2 diabetes and 178 controls) had their genotype determined by Affymetrix 500 k SNP arrays. Total values of 1,25-dihydroxyvitamin D (1,25(OH)2D), 25-hydroxyvitamin D (25(OH)D), 24,25-dihydroxyvitamin D (24,25(OH)2D), and 25-hydroxy-3epi-vitamin D (3epi-25(OH)D) concentrations were measured by the LC-MS/MS analysis. Results. The distribution was as follows: 164 (41.2%) genotyped Q1, 149 (37.4%) genotyped Q2, 31 (7.8%) genotyped Q3, and 54 (13.6%) genotyped “admixed.” Median levels of 25(OH)D and 3epi-25(OH)D did not differ across Q1, Q2, Q3, and “admixed” genotypes, respectively. 1,25(OH)2D levels were lower (p<0.04) between Q2 and the admixed groups, and 24,25(OH)2D levels were lower (p<0.05) between Q1 and the admixed groups. Vitamin D metabolite levels were lower in females for 25(OH)D, 1,25(OH)2D (p<0.001), and 24,25(OH)2D (p<0.006), but 3epi-25(OH)D did not differ (p<0.26). Diabetes prevalence was not different between genotypes. Total 1,25(OH)2D (p<0.001), total 24,25(OH)2D (p<0.001), and total 3epi-25(OH)D (p<0.005) were all significantly lower in diabetes patients compared to controls whilst the total 25(OH)D was higher in diabetes than controls (p<0.001). Conclusion. Whilst 25(OH)D levels did not differ between genotype groups, 1,25(OH)2D and 24,25(OH)2D were lower in the admixed group, suggesting that there are genetic differences in vitamin D metabolism that may be of importance in a population that may allow a more targeted approach to vitamin D replacement. This may be of specific importance in vitamin D replacement strategies with the Q2 genotype requiring less, and the other genotypes requiring more to increase 1,25(OH)2D. Whilst overall the group was vitamin D deficient, total 25(OH)D was higher in diabetes, but 1,25(OH)2D, 24,25(OH)2D, and 3epi-25(OH)D were lower in diabetes that did not affect the relationship to genotype.


2016 ◽  
Vol 37 (5) ◽  
pp. 521-547 ◽  
Author(s):  
Peter J. Tebben ◽  
Ravinder J. Singh ◽  
Rajiv Kumar

AbstractHypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathyroidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D [1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of 25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase (CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D. Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450 (CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concentrations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest, first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia, their biochemical diagnosis, and treatment.


2016 ◽  
Vol 20 (10) ◽  
pp. 1857-1864 ◽  
Author(s):  
Sonali Rajan ◽  
Tom Weishaar ◽  
Bryan Keller

AbstractObjectiveCurrent US dietary recommendations for vitamin D vary by age. Recent research suggests that body weight and skin colour are also major determinants of vitamin D status. The objective of the present epidemiological investigation was to clarify the role of age as a predictor of vitamin D status, while accounting for body weight and skin colour, among a nationally representative sample.DesignWe calculated the mean serum 25-hydroxyvitamin D levels for the US population by age and weight, as well as by weight and race/ethnicity group. Multiple regression analyses were utilized to evaluate age and weight as predictors of vitamin D status: serum 25-hydroxyvitamin D levels with age alone, age and body weight, and age, body weight and their two-way interaction were modelled for the entire sample and each age subgroup. Graphical data were developed using B-spline non-linear regression.SettingNational Health and Nutrition Examination Survey (31 934 unweighted cases).SubjectsIndividuals aged 1 year and older.ResultsThere were highly significant differences in mean vitamin D status among US residents by weight and skin colour, with those having darker skin colour or higher body weight having worse vitamin D status. Although a significant factor, the impact of age on vitamin D status was notably less than the impact of body weight.ConclusionsVitamin D status varied predominantly by body weight and skin colour. Recommendations by nutritionists for diet and supplementation needs should take this into account if vitamin D-related health disparities are to be meaningfully reduced across the USA.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4260
Author(s):  
Liana Najjar ◽  
Joshua Sutherland ◽  
Ang Zhou ◽  
Elina Hyppönen

Several observational studies have examined vitamin D pathway polymorphisms and their association with type 1 diabetes (T1D) susceptibility, with inconclusive results. We aimed to perform a systematic review and meta-analysis assessing associations between selected variants affecting 25-hydroxyvitamin D [25(OH)D] and T1D risk. We conducted a systematic search of Medline, Embase, Web of Science and OpenGWAS updated in April 2021. The following keywords “vitamin D” and/or “single nucleotide polymorphisms (SNPs)” and “T1D” were selected to identify relevant articles. Seven SNPs (or their proxies) in six genes were analysed: CYP2R1 rs10741657, CYP2R1 (low frequency) rs117913124, DHCR7/NADSYN1 rs12785878, GC rs3755967, CYP24A1 rs17216707, AMDHD1 rs10745742 and SEC23A rs8018720. Seven case-control and three cohort studies were eligible for quantitative synthesis (n = 10). Meta-analysis results suggested no association with T1D (range of pooled ORs for all SNPs: 0.97–1.02; p > 0.01). Heterogeneity was found in DHCR7/NADSYN1 rs12785878 (I2: 64.8%, p = 0.02). Sensitivity analysis showed exclusion of any single study did not alter the overall pooled effect. No association with T1D was observed among a Caucasian subgroup. In conclusion, the evidence from the meta-analysis indicates a null association between selected variants affecting serum 25(OH)D concentrations and T1D.


2013 ◽  
Vol 98 (12) ◽  
pp. 4619-4628 ◽  
Author(s):  
Bruce W. Hollis ◽  
Carol L. Wagner

Context: There is no doubt that vitamin D must be activated to the hormonal form 1,25-dihydroxyvitamin D to achieve full biological activity or that many tissues participate in this activation process—be it endocrine or autocrine. We believe that not only is 25-hydroxyvitamin D important to tissue delivery for this activation process, but also that intact vitamin D has a pivotal role in this process. Objective: In this review, evidence on the vitamin D endocrine/autocrine system is presented and discussed in relation to vitamin D-binding protein affinity, circulating half-lives, and enzymatic transformations of vitamin D metabolites, and how these affect biological action in any given tissue. Conclusions: Circulating vitamin D, the parent compound, likely plays an important physiological role with respect to the vitamin D endocrine/autocrine system, as a substrate in many tissues, not originally thought to be important. Based on emerging data from the laboratory, clinical trials, and data on circulating 25-hydroxyvitamin D amassed during many decades, it is likely that for the optimal functioning of these systems, significant vitamin D should be available on a daily basis to ensure stable circulating concentrations, implying that variation in vitamin D dosing schedules could have profound effects on the outcomes of clinical trials because of the short circulating half-life of intact vitamin D.


2013 ◽  
Vol 53 (2) ◽  
pp. 367-374 ◽  
Author(s):  
Armin Zittermann ◽  
Jana B. Ernst ◽  
Jan F. Gummert ◽  
Jochen Börgermann

Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 371 ◽  
Author(s):  
Emma A. Hurst ◽  
Natalie Z. Homer ◽  
Richard J. Mellanby

The demand for vitamin D analysis in veterinary species is increasing with the growing knowledge of the extra-skeletal role vitamin D plays in health and disease. The circulating 25-hydroxyvitamin-D (25(OH)D) metabolite is used to assess vitamin D status, and the benefits of analysing other metabolites in the complex vitamin D pathway are being discovered in humans. Profiling of the vitamin D pathway by liquid chromatography tandem mass spectrometry (LC-MS/MS) facilitates simultaneous analysis of multiple metabolites in a single sample and over wide dynamic ranges, and this method is now considered the gold-standard for quantifying vitamin D metabolites. However, very few studies report using LC-MS/MS for the analysis of vitamin D metabolites in veterinary species. Given the complexity of the vitamin D pathway and the similarities in the roles of vitamin D in health and disease between humans and companion animals, there is a clear need to establish a comprehensive, reliable method for veterinary analysis that is comparable to that used in human clinical practice. In this review, we highlight the differences in vitamin D metabolism between veterinary species and the benefits of measuring vitamin D metabolites beyond 25(OH)D. Finally, we discuss the analytical challenges in profiling vitamin D in veterinary species with a focus on LC-MS/MS methods.


2017 ◽  
Vol 116 (8) ◽  
pp. 1092-1110 ◽  
Author(s):  
P G Vaughan-Shaw ◽  
F O'Sullivan ◽  
S M Farrington ◽  
E Theodoratou ◽  
H Campbell ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A270-A270
Author(s):  
You Joung Heo ◽  
Yun Jeong Lee ◽  
Kyunghoon Lee ◽  
Jae Hyun Kim ◽  
Choong Ho Shin ◽  
...  

Abstract Abstract Context: The “free hormone” hypothesis suggests that the free 25-hydroxyvitamin D (25OHDFree) level may usefully indicate bone health. Objective: To determine which vitamin D measure is optimally correlated with clinical and bone parameters in healthy children. Design and Participants: A cross-sectional study including 146 healthy children (71 boys, 9.5±1.9 years) at a tertiary medical center. Main Outcome Measures: We used a multiplex liquid chromatography-tandem mass spectrometry-based assay to simultaneously measure vitamin D metabolites. The 25OHDFree level was directly measured (m-25OHDFree) or calculated using genotype-constant or genotype-specific affinity coefficients of vitamin D-binding proteins (con-25OHDFree or spe-25OHDFree). Bone mineral content (BMC) and density (BMD) were assessed via dual-energy X-ray absorptiometry. Results: The concentrations of total 25OHD (25OHDTotal), the three forms of 25OHDFree, and 24,25-dihydroxyvitamin D3 correlated with parathyroid hormone levels (all p&lt;0.01). Serum 25OHDTotal and m-25OHDFree levels reflected age, puberty, season, body mass index (BMI), daylight hours, and vitamin D intake (all p&lt;0.05). The con-25OHDFree level better reflected puberty and daylight hours than did the spe-25OHDFree level (both p&lt;0.01). The association between the 25OHDTotal level and bone parameters varied according to the BMI (interaction p&lt;0.05). In 109 normal-weight children, the con-25OHDFree level correlated with BMC and BMD (both p&lt;0.05), but the 25OHDTotal and 24,25-dihydroxyvitamin D3 levels were associated with BMC (both p&lt;0.05). No association was found in overweight or obese children. Conclusions: In healthy children, total and free 25OHD levels comparably reflected lifestyle factors. In normal-weight children, the con-25OHDFree level reflected BMC and BMD, whereas the 25OHDTotal level was associated with BMC.


Sign in / Sign up

Export Citation Format

Share Document