Effects of a thermally stable chlorophyll extract from diatom algae on surface textured Si solar cells

RSC Advances ◽  
2015 ◽  
Vol 5 (44) ◽  
pp. 35302-35306 ◽  
Author(s):  
Chiang-Ting Chen ◽  
Fang-Chi Hsu ◽  
Jeng-Yeh Huang ◽  
Chi-Yuan Chang ◽  
Tsung-Yuan Chang ◽  
...  

We present the effects of a chlorophyll extract from diatom algae as a spin-coating anti-reflection layer on surface textured silicon solar cells.

2017 ◽  
Vol 5 (35) ◽  
pp. 9005-9011 ◽  
Author(s):  
Ju Hwan Kim ◽  
Dong Hee Shin ◽  
Ha Seung Lee ◽  
Chan Wook Jang ◽  
Jong Min Kim ◽  
...  

The co-doping of graphene with Au nanoparticles and bis(trifluoromethanesulfonyl)-amide is employed for the first time to enhance the performance of graphene/porous Si solar cells.


RSC Advances ◽  
2015 ◽  
Vol 5 (124) ◽  
pp. 102682-102688 ◽  
Author(s):  
Ming Hong ◽  
Tongtong Xuan ◽  
Jiaqing Liu ◽  
Ziyao Jiang ◽  
Yiwei Chen ◽  
...  

CIS/ZnS QDs were synthesized by microwave irradiation in air. The fabricated QDs/PMMA composite films were first applied to Si solar cells to improve the conversion efficiency by 3.8%.


RSC Advances ◽  
2014 ◽  
Vol 4 (98) ◽  
pp. 55300-55304 ◽  
Author(s):  
Kejia Jiao ◽  
DangWen Zhang ◽  
Yunfa Chen

A facile method – graphene on silicon (G/Si) solar cells prepared by spray coating – is developed. The efficiency of spray-coated G/Si solar cells can reach 4.41%, comparable to that of conventional CVD-G/Si solar cells. This approach is done in air at low temperature, and is easy to scale up, making it appealing for the mass production of efficient and cost-effective G/Si solar cells.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55499-55506 ◽  
Author(s):  
Hom N. Luitel ◽  
Shintaro Mizuno ◽  
Toshihiko Tani ◽  
Yasuhiko Takeda

The newly developed CaZrO3:Er3+,Ni2+ broadband-sensitive upconverter utilizes 1060–1600 nm solar irradiation and can surpass the limiting efficiency of c-Si solar cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Abdullah Uzum ◽  
Hiroyuki Kanda ◽  
Takuma Noguchi ◽  
Yuya Nakazawa ◽  
Shota Taniwaki ◽  
...  

Aluminum acetylacetonate-based AlOx thin films were introduced as a low-cost, high-quality passivation layers for crystalline silicon solar cells. Films were formed by a spin coating method on p-type silicon substrates at 450°C in ambient air, O2, or water vapor (H2O/O2) for 15 or 120 min. XPS analysis confirms the AlOx formation and reveals a high intensity of interfacial SiOx at the AlOx/Si interface of processed wafers. Ambient H2O/O2 was found to be more beneficial for the activation of introduced AlOx passivation films which offers high lifetime improvements with a low thermal budget. Carrier lifetime measurements provides that symmetrically coated wafers reach 119.3 μs and 248.3 μs after annealing in ambient H2O/O2 for 15 min and 120 min, respectively.


2020 ◽  
Vol 995 ◽  
pp. 71-76
Author(s):  
Aaron Glenn ◽  
Conor Mc Loughlin ◽  
Hind Ahmed ◽  
Hoda Akbari ◽  
Subhash Chandra ◽  
...  

The main energy losses in solar cells are related to spectral losses where high energy photons are not used efficiently, and energy is lost via thermalization which reduces the solar cell’s overall efficiency. A way to tackle this is to introduce a luminescent down-shifting layer (LDS) to convert these high energy photons into a lower energy bracket helping the solar cell to absorb them and thus generating a greater power output. In this paper, lumogen dye Violet 570 has been used as LDS coated films of 10μm and 60μm placed on top of Si solar cells. The dye was incorporated into polymer films of Polyvinyl Butyral (PVB) and Polymethyl Methacrylate (PMMA) after which they were tested for their absorption, transmission and emission properties. Once optimised layers had been determined, they were deposited directly onto silicon solar cells and the external quantum efficiency (EQE) of the Si solar cells were measured with and without the LDS layers. The resulting graphs have shown an increase of up to 2.9% in the overall EQE efficiency after the lumogen films had been applied.


2018 ◽  
Vol 113 (26) ◽  
pp. 262102 ◽  
Author(s):  
Tian Zhang ◽  
Md. Anower Hossain ◽  
Chang-Yeh Lee ◽  
Yahya Zakaria ◽  
Amir A. Abdallah ◽  
...  

2016 ◽  
Vol 847 ◽  
pp. 123-130 ◽  
Author(s):  
Ruo Bing Jiao ◽  
Tao Wu ◽  
Bo Ping Zhang ◽  
Liang Liang Li

The silver pastes containing Ag2O powder, Ag powder, α-terpineol, ethyl-cellulose and Pb-free glass were synthesized for crystalline silicon (c-Si) solar cells. It was found that α-terpineol assisted the decomposition of Ag2O powder and effectively lowered the decomposition temperature of Ag2O. Ag nanoparticles were produced during the decomposition of Ag2O, which helped to reduce the sintering temperature of the silver pastes. The Ag2O-aided silver pastes were fired on polycrystalline silicon solar cells at various temperatures, and large plate-shaped Ag crystallites appeared at the interfaces between the sintered pastes and the emitter, which ensured a good electrical contact. The contact resistivity of Ag2O-aided silver paste with an optimal ratio of Ag2O to Ag was lower than that of the paste with pure Ag powder. The lowest contact resistivity of Ag2O-aided Pb-free silver pastes sintered at 800°C was 0.029 Ω⋅cm2, which was close to that of commercial silver paste that contained Pb-based glass (0.026 Ω⋅cm2). The experimental data demonstrated that the addition of Ag2O reduced the contact resistance and promoted the sintering of Pb-free silver pastes, and Ag2O-aided Pb-free silver paste could be a promising candidate used for front-contact electrode of c-Si solar cells.


2014 ◽  
Vol 521 ◽  
pp. 52-55
Author(s):  
Chun Rong Xue ◽  
Yu Qin Gu ◽  
Ming Liang Deng

This work presents study of both the antireflection coatings on silicon solar cells and surface texture of silicon solar cell, with the aim to prepare high quality Si solar cells. Surface texturing, either in combination with an anti-reflection coating or by itself, can be used to minimize reflection, but the large reflection loss can be reduced significantly via a suitable anti-reflecting coatings. Significant improvement of the short circuit current after anti-reflecting coatings was observed. It is found that the currentvoltage characteristic with a double-layer anti-reflecting coatings is better than that with a single-layer anti-reflecting coatings. Depositing a multilayer on the textured surface reduces the large reflection loss significantly. The short circuit current of silicon solar cells has significant improvement after depositing anti-reflecting coatings on textured surface silicon, and it increases the efficiency of the Si solar cells.


RSC Advances ◽  
2014 ◽  
Vol 4 (66) ◽  
pp. 34823-34829 ◽  
Author(s):  
Jongsung Park ◽  
Nochang Park

Chemical wafer recovering processes fabricate virgin-like c-Si wafers from degraded c-Si solar cells.


Sign in / Sign up

Export Citation Format

Share Document