Nitrogen- and oxygen-containing activated carbons from sucrose for electrochemical supercapacitor applications

RSC Advances ◽  
2015 ◽  
Vol 5 (77) ◽  
pp. 63000-63011 ◽  
Author(s):  
Navaladian Subramanian ◽  
Balasubramanian Viswanathan

High surface area nitrogen- and oxygen-containing activated carbons have been synthesized from sucrose and ammonium nitrateviacombustion route for supercapacitor applications.

RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 45749-45754 ◽  
Author(s):  
Vivek Sharma ◽  
Asit Sahoo ◽  
Yogesh Sharma ◽  
Paritosh Mohanty

Microwave-assisted synthesis of high surface area (SABET = 1059 m2 g−1) nanoporous hypercrosslinked polyaniline for gas storage and supercapacitor applications.


2013 ◽  
Vol 38 (25) ◽  
pp. 10453-10460 ◽  
Author(s):  
W. Zhao ◽  
V. Fierro ◽  
N. Fernández-Huerta ◽  
M.T. Izquierdo ◽  
A. Celzard

2017 ◽  
Vol 36 (3) ◽  
pp. 44-53
Author(s):  
G. D. Akpen ◽  
M. I. Aho ◽  
N. Baba

Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ,7000C and 8000C for 30 minutes. The same procedure was repeated for 60, 90, 120 and 150 minutes respectively. Activation was done using impregnationratios of 1:12, 1:6, 1:4, 1:3, and 1:2 respectively of ZnCl2 to carbonised Albizia saman pods by weight. The activated carbon was then dried in an oven at 1050C before crushing for sieve analysis. The following properties of the produced Albizia saman pod activated carbon (ASPAC) were determined: bulk density, carbon yield, surface area and ash, volatile matter and moisture contents. The highest surface area of 1479.29 m2/g was obtained at the optimum impregnation ratio, carbonization time and temperature of 1:6, 60 minutes and 5000C respectively. It was recommended that activated carbon should be prepared from Albizia saman pod with high potential for adsorption of pollutants given the high surface area obtained.Keywords: Albizia saman pod, activated carbon, carbonization, temperature, surface area


Carbon ◽  
2019 ◽  
Vol 145 ◽  
pp. 773 ◽  
Author(s):  
Kai Wang ◽  
Chao Gao ◽  
Song-en Li ◽  
Jin-yu Wang ◽  
Xiao-dong Tian ◽  
...  

2016 ◽  
Vol 35 (6) ◽  
pp. 535-541 ◽  
Author(s):  
Hongying Xia ◽  
Jian Wu ◽  
Chandrasekar Srinivasakannan ◽  
Jinhui Peng ◽  
Libo Zhang

AbstractThe present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.


2012 ◽  
Vol 66 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Ş. Gül ◽  
O. Eren ◽  
Ş. Kır ◽  
Y. Önal

The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption. The highest BET surface area carbon (1,275 m2/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.


2015 ◽  
Vol 39 (12) ◽  
pp. 9124-9131 ◽  
Author(s):  
Savita Patil ◽  
Shrikant Raut ◽  
Ratnakar Gore ◽  
Babasaheb Sankapal

Room-temperature synthesis of Cd(OH)2 thin film consisting of high-surface-area nanowires. Device-grade development as a symmetric supercapacitor.


Sign in / Sign up

Export Citation Format

Share Document